Funct. Mater. 2025; 32 (3): 386-396.

doi:https://doi.org/10.15407/fm32.03.386

Experimental design in the study of wear properties of polymer composites

Nurlan Gurbanov1, Kamala Ismayilova1, Mustafa Yunus Askin2

1 Department of Mechanical and Materials Science Engineering, Azerbaijan State Oil and Industry University, Azerbaijan
2 Materials Research and Development Center, Iron & Steel Institute, Karabuk University, Turkey

Abstract: 

This study consists of two stages. In the first stage, the wear properties of HDPE (high density polyethylene) matrix composites reinforced with carbon fiber (CF) and basalt fiber (BF) at different ratios were investigated in artificial body fluid in accordance with ASTM G33 standard; in the second stage, the Taguchi method was used for the experimental design of wear tests of the polymer composites. It was established that the composite samples reinforced with 10% CF and 10% BF had the best wear performance especially under low loads (10N and 30N). Although the combination of CF and BF with PE-g-MA (maleic anhydride) (10CF/3MA and 20BF/6MA) provided certain improvements in wear performance, it was observed that wear rate increased as the load increased. It was noted that the wear rates for polymer composite samples increased depending on the concentration of fibers and the increase in normal load.

Keywords: 
HDPE, carbon fiber, basalt fiber, adhesive wear, experimental design
References: 

1. R. Hsissou, R. Seghiri, et al., Polymer composite materials: A comprehensive review, Composite Structures, 2021, 262, p. 113640.

2. E. G. Bajsi<0x0107>, I. Smit, M. Leskovac, Journal of Applied Polymer Science, 104, 3980 (2007).

3. H.H. Parikh, P.P. Gohil, J. Reinf. Plast. Comp., 34, 1340 (2015).

4. K.H. Zum Gahr, Microstructure and Wear of Materials, Elsevier, Amsterdam, 1987.

5. B. Suresha, G. Chandramohan, D. N. Jawali, S. Siddaramaiah, Journal of Composite Materials, 41, 2701–2713 (2007).

6. Z. Zhang, C. Breidt, L. Chang, F. Haupert, K. Friedrich, Composites: Part A, 35, 1385 (2004).

7. V. Dhand, G. Mittal, K.Y. Rhee, et al., Composites: Part B Eng., 73, 166 (2015).

8. S. Akinci, Sen Yilmaz, Applied Composite Materials, 19(3–4), 499 (2012).

9. O.V. Gogoleva, P.N. Petrova, S.N. Popov, A.A. Okhlopkova, Journal of Friction and Wear, 36(4), 301 (2015).

10. J. Hanchi, N.S. Eiss Jr., Wear, 203, 380 (1997).

11. E. Sclippa, K. Piekarski, Journal of Biomedical Materials Research, 7(1), 59 (1973).

12. P. Sampathkumaran, N. Kishore, S. Seetharamu, A. Murali, R.K. Kumar, Wear, 241, 208 (2001).

13. C.H.C. Rao, S. Madhusudan, G. Raghavendra, E.V. Rao, International Journal of Engineering Research and Applications, 2(5), 371 (2012).

14. N.K. Myshkin, M.I. Petrokovets, A.V. Kovalev, Tribology International, 38, 910 (2005).

15. C. Zhang, L. Breidt, F. Chang, K. Haupert, K. Friedrich, Composites Part A, 35, 1385 (2004).

16. Z. Chang, C. Zhang, K. Breidt, K. Friedrich, Wear, 258, 141 (2005).

17. G. Xian, Z. Zhang, Wear, 258, 776 (2005).

18. S.C. Kang, D.W. Chung, Wear, 239, 244 (2000).

19. J.N. Aslanov, S.M. Abbasova, Z.S. Huseynli, EUREKA: Physics and Engineering, 5, 60 (2020).

20. K. Friedrich, Advanced Industrial and Engineering Polymer Research, 1, 3 (2018)/

21. Y. Sahin, Materials Science and Engineering A, 408, 1 (2005).

22. P. Singh, et al., Materials Today: Proceedings, 64(3), 1357 (2022).

23. N. Myshkin, A. Kovalev, Friction, 6, 143 (2018).

24. S. Affatato, D. Brando, in Wear of Orthopaedic Implants and Artificial Joints, 2013, ISBN: 9780857091284, p. 448.

25. S. Jha, J. Bijwe, Wear, 256(3-4), 462 (2004).

26. B. Gogoi, A.K. Nath, K. Kalita, Materials Science and Engineering: A, 392(1-2), 237 (2005).

27. A.P. Harsha, U.S. Tewari, Wear, 254(3-4), 320 (2002).

28. T.R. Hemanth Kumar, R.P. Swamy, T.K. Chandrashekar, Journal of Minerals & Materials Characterization & Engineering, 10(12), 1179 (2011).

29. S. Koksal, F. Fici, R. Kayikci, O. Savas, Materials and Design, 42, 124 (2012).

30. Y. Sahin, Materials Science and Engineering A, 408, 1 (2005).

31. R.O. Ebewele, Polymer Science and Technology, CRC Press, 2000, p. 483.

32. H.H. Parikh, P.P. Gohil, J. Reinf. Plast. Comp., 34, 1340 (2015).

33. B.N. Ramesh, B. Suresha, Mater. Design, 59, 38 (2014).

34. Oushabi, S. Sair, F.O. Hassani, et al., S. Afr. J. Chem. Eng., 23, 116 (2017).

35. Bhushan, Modern Tribology Handbook/Volume One – Principles of Tribology, CRC Press, 2000, p. 529.

36. J. Takadoum, Materials and Surface Engineering in Tribology, John Wiley & Sons, Inc., New Jersey, 2007.

37. J.K. Fink, High Performance Polymers, William Andrew, New York, 2008.

38. J. Takadoum, Guide to Friction, Wear and Erosion Testing, John Wiley & Sons, Inc., New Jersey, 2007.

39. C. Hu, X. Liao, Q.-H. Qin, G. Wang, , Composites Part A: Applied Science and Manufacturing, 121, 149 (2019).

40. Y.X. Yu, B.L. He, L. Li, Advanced Materials Research, 791, 506 (2013).

41. E.C. Willis, Thermal characterization of commercial HDPE and UHMWPE, Los Alamos National Lab (LANL), Los Alamos, NM, USA, 2018.

42. J.M. Quiroz-Castillo, D.E. Rodríguez-Félix, H. Grijalva-Monteverde, et al., Carbohydrate Polymers, 101, 1094 (2014).

43. M.A. Gunning, O.M. Istrate, L.M. Geever, et al., Journal of Applied Polymer Science, 124(6), 4799 (2012).

44. J.Z. Lu, I.I. Negulescu, Q. Wu, Composite Interfaces, 12(1–2), 125 (2005).