Funct. Mater. 2025; 32 (3): 405-410.

doi:https://doi.org/10.15407/fm32.03.405

Study of thermal effects in polymer coatings with increasing temperature

O.O. Sapronov1, P.O. Maruschak2, V.L. Demchenko3, R.T.Bishchak4, V.D. Sharanov1, D.O. Danylenko1, A.V. Sapronova1, V.V. Sotsenko1, P.O. Vorobiov1, A.O. Sokol1, K.Yu. Yurenin1, V.L. Aleksenko1

1Kherson State Maritime Academy, 20 Ushakov Ave., Kherson, 73009, Ukraine
2Ternopol Ivan Pul′uj National Technical University, 56 Ruska Ave., Ternopil, 46001, Ukraine
3E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevich St., Kyiv, 03150, Ukraine
4Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., Ivano-Frankivsk, 76019, Ukraine

Abstract: 

The change of linear deformations of the developed epoxy composites under the influence of a thermal field is investigated. It is established that nanocomposites are characterized by different rates of relaxation processes, which makes it possible to choose nanocomposites or coatings based on them with the required thermal coefficient of linear expansion for protection of parts of transport equipment, in particular, ship equipment against external influences. It was found that the optimal content of nanodispersed fullerene-carbon black mixture in the reaction plastic matrix is q = 0.050 pph per 100 pph of epoxy oligomer ED-20 and 10 pph of polyethylenepolyamine (PEPA) hardener. The obtained epoxy composites have the following characteristics: thermal coefficient of linear expansion is –α = (5.61...5.79) × 10-5 K-1 in the temperature range ΔT = 303...323 K; the glass-transition temperature is Tc = 338...343 K; shrinkage up to 1%. Using thermogravimetric analysis (TGA) and differential thermal analysis (DTA) methods, the operating temperature range of the developed composite materials without changing their properties was determined to be 273-555 K.

Keywords: 
nanodispersed fullerene-carbon black mixture, polymer coating, thermal coefficient of linear expansion, glass transition temperature, thermogravimetric analysis, differential thermal analysis.
References: 

1. O.V. Suberlyak, V.V.Krasinskyi, Y.M. Shapoval, O.M.Grytsenko, Mater. Scie., 46, 669 (2011).

2. P.D. Stukhlyak, M.M. Mytnyk, V.O. Orlov, Mater. Scie., 37, 80 (2001).

3. A. Buketov, S. Smetankin, P. Maruschaket al., Transport, 35, 679 (2020).

4. A.-M. Tomina, O.Yeromenko, Funct. Mater., 30 (3), 403 (2023).

5. O.V. Totosko, P.D. Stukhlyak, A.H. Mykytyshyn et al., Funct. Mater., 27 4, 760 (2020).

6. O. Sapronov, P. Maruschak, V. Sotsenko et al., J. Mar. Sci. Eng., 8, 527 (2020).

7. I.G. Dobrotvor, P.D. Stukhlyak, A.G. Mykytyshyn et al., Strength Mater, 53, 283 (2021).

8. O.Grytsenko, E. Spišák, L. Dulebová et al., Mater. Sci. For., 818, 97 (2015).

9. N. Dolgov, P. Stukhlyak, O. Totosko et al., Mechanics of Advanced Materials and Structure, 1 (2023).

10. E.A. Lysenkov, O.V. Stryutskiy, Yu.P.Gomza, V.V. Klepko, Funct. Mater., 22, 40 (2015).

11. V. Kashytskyi, P. Savchuk, V. Malets et al., Eastern-Europ. J. of Enterp. Technolog., 3, 16 (2017).

12. P.D. Stukhlyak, K.M. Moroz, Materials Science, 46, 455 (2011).

13. E.A. Lysenkov, V.V. Klepko, J. of Engin. Phys. and Therm., 88, 1008 (2015).

14. M.A. Grashchenkova, A.-M.V. Tomina, O.I. Burya, et al., Nanosistemi, Nanomateriali, Nanotehnologii, 21, 139 (2023).

15. O.O. Sapronov, A.V. Buketov, D.O. Zinchenko, V.M. Yatsyuk, Composites: Mechan. Computat., Applicat., 8, 47 (2017).

16. P.D. Stukhlyak, O.S. Holotenko, I.H. Dobrotvor et al., Mater. Scie., 5, 208. (2015).

17. J. Hong, T. Wu, H. Wu, et al. Nanohybrid silver nanoparticles@halloysite nanotubes coated with polyphosphazene for effectively enhancing the fire safety of epoxy resin. Chem. Eng. J., 407, 127087 (2020).

18. A.V. Dobrotvor et al., Strength of Materials, 41, 431 (2009).

19. I.H. Buketov, Mater. Scie., 45, 582 (2009).

20. E.B. Zeynalov, J.F. Friedrich, Materials Testing, 49, 265 (2007).

21. B.M. Ginzburg, L.A. Shibaev, O.F. Kireenko, et al., Polymer Science A, 47, 160 (2005).

22. P. Jojibabu, G.D.J. Ram, A.P. Deshpande, S.R. Bakshi, Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging. Polym. Degrad. Stab., 140, 84, (2017).

23. A. Kausar, I. Ahmad. J. of Thermoplastic Comp. Mater., 37, 3669 (2024).

24. A. Buketov, O. Sapronov, A. Menou, et al., Transbaltica 2021, F1395, 212 (2022).

25. S. Verma, S. Mohanty, S. Nayak, Journal of coatings technology and research, 16, 307 (2019).

26. S. Roy, K. Mitra, C. Desai, et al., J. Nanotechnol. Eng. Med., 4, 011008 (2013).

27. O.Sapronov, A. Buketov, B. Kim, P. Vorobiov, L. Sapronova, Materials, 17, 1503 (2024).

28. A. Buketov, O.Sapronov, K. Klevtsov, B. Kim, Polymers, 15, 3449 (2023).

29. A. Panda, K. Dyadyura, J. Valíček, et al., Polymers, 14, 3275 (2022).

30. N. Régnier, S. Fontaine, J. Therm. Anal. Calorim, 64, 789 (2021).