Funct. Mater. 2025; 32 (3): 418-422.

doi:https://doi.org/10.15407/fm32.03.418

The phase composition and physical properties of melt-quenched multicomponent alloy FeCoNiB0.7Si0.3Be

O.I. Kushnerov1, S.I. Ryabtsev1, P.O. Galagan1, V.F. Bashev2

1Oles Honchar Dnipro National University, Dnipro, Ukraine
2Dniprovsky State Technical University, Kamianske, Ukraine

Abstract: 

The structure and physical properties of the high-entropy multicomponent alloy FeCoNiB0.7Si0.3Be in the as-cast and melt-quenched states were studied. The cooling rate of the melt-quenched films was estimated to be ~ 106 K/s based on the film thickness. X-ray analysis revealed a multiphase structure, including a BCC-type ordered phase (structural type B2) and intermetallic compounds (Fe, Ni, Co)2B. In melt-quenched samples, the fraction of the B2 phase increased, leading to a decrease in microhardness (from 10400 MPa in as-cast to 8900 MPa in melt-quenched samples). Magnetic studies confirmed the ferromagnetic nature of the FeCoNiB0.7Si0.3Be alloy. The coercive field of melt-quenched samples (17500 A/m) was significantly higher than that of the as-cast ones (5200 A/m), which is attributed to structure refinement and the increase in the level of microstresses.

Keywords: 
high-entropy alloy, structure, phase composition, melt-quenching, mechanical properties, magnetic properties.
References: 

1. K. Biswas, N. P. Gurao, T. Maiti, R. S. Mishra, High Entropy Materials. Springer Nature, Singapore (2022).

2. Y. Zhou, H. Xiang, F.-Z. Dai, High Entropy Materials. From Basics to Applications. Wiley, Weinheim (2023).

3. D. B. Miracle, O. N. Senkov, Acta Mater. 122, 448 (2017).

4. V.N. Voyevodin, V.A. Frolov, E.V. Karaseva, A.V. Mats, E.S. Savchuk, V.I. Sokolenko, T.M. Tikhonovskaya, Funct. Mater. 28, 683 (2021).

5. O. S. Bulatov, V. S. Klochko, A. V. Korniyets, I. V. Kolodiy, O. O. Kondratov, T. M. Tikhonovska, A.S.Tortika, Funct. Mater. 28, 492 (2021).

6. S. Karpov, Probl. At. Sci. Technol. 2024, 48 (2024).

7. G. S. Firstov, Y. M. Koval, V. S. Filatova, V. V. Odnosum, G. Gerstein, and H. J. Maier, Prog. Phys. Met. 24, 819 (2023).

8. V. A. Polonskyy, V. F. Bashev, and O. I. Kushnerov, J. Chem. Technol. 28, 176 (2020).

9. O. I. Kushnerov, S. I. Ryabtsev, V. F. Bashev, Mol. Cryst. Liq. Cryst. 750, 135 (2023).

10. O. I. Kushnerov,V. F. Bashev, East Eur. J. Phys. 25, 43 (2021).

11. V. F. Bashev, O. I. Kushnerov, S. I. Ryabtsev, Mol. Cryst. Liq. Cryst. 765, 145 (2023).

12. J. Tang, W. Jia, Y. Wang, Y. Shi, H. Huang, and G. Zhang, J. Alloys Compd. 1010, 177608 (2025).

13. T. Lu, T. He, A. F. Andreoli, N. Yao, B. Wan, and S. Scudino, Mater. Charact. 215, 114237 (2024).

14. B. L. An, P. C. Zhang, Z. R. Cao, C. Zhang, and L. Liu, Scr. Mater. 252, 116282 (2024).

15. T. Qi, Y. Li, A. Takeuchi, G. Xie, H. Miao, and W. Zhang, Intermetallics 66, 8 (2015).

16. Y. Xu, Y. Li, Z. Zhu, and W. Zhang, J. Non. Cryst. Solids 487, 60 (2018).

17. S. Zhang, D. Ma, X. Liang, and C. Chen, Intermetallics 169, 108304 (2024).

18. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, and R. Rizzi, Powder Diffr. 32, S129 (2017).

19. M. G. Poletti and L. Battezzati, Acta Mater. 75, 297 (2014).

20. A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005).

21. C. Tantardini, A. R. Oganov, Nat. Commun. 12, 2087 (2021).

22. A. B. Melnick, V. K. Soolshenko, J. Alloys Compd. 694, 223 (2017).

23. P. Martin, C. E. Madrid-Cortes, C. Cáceres, N. Araya, C. Aguilar, J. M. Cabrera, Comput. Phys. Commun. 278, 108398 (2022).

24. V. F. Gorban, S. O. Firstov, M. O. Krapivka, A. V. Samelyuk, D. V. Kurylenko, Mater. Sci. 58, 135 (2022).

25. V. V. Girzhon, V. V. Yemelianchenko, O. V. Smolyakov, A. S. Razzokov, Results Mater. 15, 100311 (2022).