Funct. Mater. 2025; 32 (3): 429-440.
Synthesis and electrophysical properties of fluoride conducting phases Ba1-y-xLaxSn1+yF4+x
1V.I. Vernadsky Institute of General and Inorganic Chemistry, NAS of Ukraine 32-34, Acad. Palladina Ave., 03680 Kyiv, Ukraine
2Sumy State University 116, Kharkivska st., 40007 Sumy, Ukraine
In this paper, the electroconductive properties of solid non-stoichiometric phases formed in the BaF2–LaF3–SnF2. The Ba0.86-xLaxSn1.14F4+x and Ba0.8-xLaxSn1.2F4+x phases containing up to 0.12 mole fractions lanthanum were synthesized by the method of co-precipitation of BaF2 and LaF3 followed by sintering with SnF2. The crystal lattice of the synthesized compounds corresponds to the tetragonal syngony (space group P4/nmm) and is isostructural to BaSnF4. The electrical conductivity of the synthesized phases depends on the pressure at which the samples were prepared. Samples made at a pressure of 9.8 MPa have the highest conductivity. The electrical conductivity of the synthesized solutions of heterovalent substitution Ba0.86-xLaxSn1.14F4+x and Ba0.8-xLaxSn1.2F4+x is higher than the conductivity of the initial non-stoichiometric phases Ba0.86Sn1.14F4.00 and Ba0.80Sn1.20F4.00, and the activation energy of electrical conductivity is lower. An increase in the substituent amount: to 0.12 for Ba0.86-xLaxSn1.14F4+x and to 0.10 for Ba0.8-xLaxSn1.2F4+x positively affects the electrical conductivity of the obtained electrolytes. Analysis of the isothermal conductivity surface of the fluoride conducting phases Ba1-y-xLaxSn1+yF4+x x≤0.12, y≤0.2 indicates that the conductivity of solid electrolytes increases with increasing concentration of lanthanum and tin in the material. The electronic component of conductivity for the samples with different cationic composition, and the charge transfer numbers of fluorine anions were estimated. The conductivity of all synthesized phases is determined by fluorine anions, the charge transfer numbers are close to unity.
1. V. Kumaravel, J. Bartlett, S.C. Pillai, 2020. Solid electrolytes for high-temperature stable batteries and supercapacitors. Adv Energy Mater. 11 (3), 2002869. https://doi: 10.1002/aenm.202002869.
2. A. Xiao, G. Galatolo, M. Pasta, The case for fluoride-ion batteries, Joule, 5(11) (2021) 2823-
3. F. Gschwind, G. Rodriguez-Garcia, D.J.S. Sandbeck et. al., Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes, J. Fluor. Chem., 182 (2016) 76-90. https://doi.org/10.1016/j.jfluchem.2015.12.002
4. M.A. Nowroozi, I. Mohammad, P. Molaiyan, et. al., Fluoride ion batteries – past, present, and future, J Mater Chem A., 9 (2021) 5980-6012. https://doi: 10.1039/d0ta11656d.
5. S. Gopinadh, P. Phanendra, B.John et. al., 2022. Fluoride-ion batteries: State-of-the-art and future perspectives. SM&T, 32, e00436. https://doi.org/10.1016/j.susmat.2022.e00436.
6. T. Liu, N. Peng, X. Zhang, et al., Insight into anion storage batteries: Materials, properties and challenges, Energy Stor. Mater., 42 (2021) 42-67. https://doi.org/10.1016/j.ensm.2021.07.011.
7. M. Zhang , X. Cao, Y. Hao et. al., 2024. Recent progress, challenges and prospects of electrolytes for fluoride-ion batteries. Energy Reviews. 3(3), 100083. https://doi.org/10.1016/j.enrev.2024.100083
8. J. Wang, J. Hao, C. Duan, et. al., 2021. A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability. Small., 18(5), 2104508. https://doi.org/10.1002/smll.202104508
9. S. Vilminot, G. Perez, W. Granier, et. al., High ionic conductivity in new fluorine compounds of tin II. I. On PbSnF4: Relation between structure and conductivity, Solid State Ion., 2(2) (1981), 87-90. https://doi.org/10.1016/0167-2738(81)90003-5
10. R. Kanno, S. Nakamura, K. Ohno, et. al., Ionic conductivity of tetragonal PbSnF4 prepared by solid state reaction in HF atmosphere, Mat. Res. Bull., 26(11) (1991) 1111-1117. https://doi.org/10.1016/0025-5408(91)90116-4
11. F. Gschwind, J. Bastien, Parametric investigation of room-temperature fluoride-ion batteries: assessment of electrolytes, Mg-based anodes, and BiF3-cathodes, J. Mater. Chem. A., 3 (2015) 5628-5634. https://doi.org/10.1039/C4TA06625A
12. D. McTaggart, S. Warren, O. Clemens, 2023. Reconsidering Anode Materials for Fluoride-Ion Batteries–The Unexpected Roles of Carbide Formation. ChemSusChem., 16(18), e202300486. https://doi.org/10.1002/cssc.202300486
13. K. Mori, A. Mineshige, T. Emoto et al., Electrochemical, thermal, and structural features of BaF2–SnF2 fluoride-ion electrolytes, J Phys Chem C. 125 (2021). 12568-12577. https://doi: 10.1021/acs.jpcc.1c03326.
14. L. Liu, L. Yang, M. Liu, et. al., 2020. SnF2-based fluoride ion electrolytes MSnF4 (M = Ba, Pb) for the application of room-temperature solid-state fluoride ion batteries. J. Alloys Compd., 819, 152983. https://doi.org/10.1016/j.jallcom.2019.152983
15. G. Dénès, A. Muntasar, A. Madamba, et. al., The unique case of tin(II) fluoride containing unexpected substitutional solid solutions: local structure versus global structure, WIT Transactions on Engineering Sciences. 116 (2017) 223-234. https://doi.org/10.2495/MC170231.
16. L.N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: an overview, Solid State Ionics. 239 (2013) 41-49. https://doi: 10.1016/j.ssi.2013.03.009.
17. S. Chaudhuri, F. Wang, C.P. Grey, Resolving the different dynamics of the fluorine sublattices in the anionic conductor BaSnF4 by using high-resolution MAS NMR techniques, J Am Chem Soc. 124 (2002) 11746-11757. https://doi: 10.1021/ja026155j.
18. L.N. Patro, K. Hariharan, Rare earth ions (Eu3+ and Nd3+) doped BaSnF4 : transport and photoluminescence characteristics, Ionics. 19 (2013) 1611-1617. https://doi: 10.1007/s11581-013-0896-z.
19. L. Liu, L. Yang, D. Shao, et. al., Nd3+ doped BaSnF4 solid electrolyte for advanced room temperature solid-state fluoride ion batteries, Ceram Int. 46 (2020) 20521-20528. https://doi: 10.1016/j.ceramint.2020.05.16.
20. R. Pshenychnyi, O. Lysenko, T. Pavlenko, et. al., Conductive properties of solid solutions of the system xYF3-(1-x)BaF2-SnF2, Funct Mater. 30 (2023) 18-23. https://doi: 10.15407/fm30.01.18.
21. T. Shen, S. Li, K. Yue, et. al., LiF doped β-PbSnF4 with improved ionic conductivity toward high-performance all-solid-state fluoride-ion batteries, J. Mater. Chem. A. 13 (2025) 14995-15001. https://doi.org/10.1039/D5TA01188D
22. Z. Zang, L. Liu, L. Yang, et. al., Preparation and Performance of Eu3+-Doped BaSnF4-Based Solid-State Electrolytes for Room-Temperature Fluoride-Ion Batteries, ACS Sustainable Chem. Eng. 9(38) (2021) 12978-12989. https://doi.org/10.1021/acssuschemeng.1c04523
23. J. Liu, L. Yi, P. Zeng, et al., Point defect engineering enabled the high ionic conductivity of BaSnF4 for solid-state fluoride-ion batteries at room temperature, Energy Fuels. 36(24) (2022) 15258–15267. https://doi: 10.1021/acs.energyfuels.2c03509.
24. R. Pshenychnyi, T. Pavlenko, Yu. Pohorenko, et al., Synthesis, structure and properties of solid solutions Ba1–xSn1+xF4 and (KyBa1–y)(1–x)Sn1+xF4–y(1–x), Voprosy Khimii i Khimicheskoi Tekhnologii. 1 (2021) 62-70. https://doi: 10.32434/0321-4095-2021-134-1-62-70.
25. H. Chen, T. Aalto, V. Vanita, et. al., 2024. Effect of Uniaxial Stack Pressure on the Performance of Nanocrystalline Electrolytes and Electrode Composites for All-Solid-State Fluoride-Ion Batteries. Small Structures, 5(7), 2300570. https://doi.org/10.1002/sstr.202300570
26. C. Schneider, C.P. Schmidt, A. Neumann, et. al., 2023. Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t-Li7SiPS8. Adv. Energy Mater., 13(5), 2203873. https://doi.org/10.1002/aenm.202203873
27. Yu. Pogorenko, R. Pshenychnyi, V. Lutsyk, et. al., 2017. Transport Properties of Aliovalent Substitution Solid Solutions of the System (1-x)PbF2-xYF3-SnF2. IOP Conf. Ser.: Mater. Sci. Eng. 175, 012039. https://doi10.1088/1757-899X/175/1/012039
28. Yu. Pogorenko, R. Pshenychnyi, A. Omelchuk, V. Trachevskyi, Conductivity of aliovalent substitution solid solutions Pb1–xRxSnF4+x, Solid State Ionics. 338 (2019) 80-86. https://doi:10.1016/j.ssi.2019.05.001.
29. J. Wagner, C. Wagner Electrical conductivity measurements on cuprous halides, J Chem Phys. 26 (1957) 1597-1601. https://doi:10.1063/1.1743590.
30. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst A. 32 (1976) 751-767. https://doi:10.1107/S0567739476001551.
31. Sh. Yoshikado, Y. Ito, J.M. Réau, Fluoride ion conduction in Pb1-xSnxF2 solid solution system, Solid State Ionics. 154-155 (2002) 503-509. https://doi.org/10.1016/S0167-2738(02)00489-7
32. Y. Pogorenko, R. Pshenychnyi, A. Omelchuk et. al., Synthesis and conductivity properties of solid solutions Pb1–xLnxSnF4+x (Ln - La, Ce, Nd, Sm, Gd), Ukr. Chem. J.. 3(82) (2016) 33-43. ISSN 0041-6045.
33. Y. Ito, T. Mukoyama, H. Funatomi, et. al., The crystal structure of tetragonal form PbSnF4, Solid State lonics. 67(3-4) (1994) 301-305. https://doi.org/10.1016/0167-2738(94)90021-3
34. M. A. Reddy, M. Fichtner Fluoride-Ion Conductors, in: N.J. Dudney, W.C. West, J. Nanda (Eds.) Materials and Energy: Volume 6 Handbook of Solid State Batteries 2nd Edition, World Scientific, Singapore, 2015, p. 277-306.
35. O. Lysenko, R. Pshenychnyi, T. Pavlenko, et. al., Synthesis, structure and electrophysical properties of fluoride-conducting phases Ba1–xLaxSnF4+x, Chem. Chem. Technol. 18(3) (2024) 313-320. https://doi: 10.23939/chcht18.03.313
36. O. Lysenko, R. Pshenychnyi, A. Omelchuk, Conductivity of non-stoichiometric fluoride-conducting phases Ba0.9–xLaxSn1.1F4+x, Voprosy Khimii i Khimicheskoi Tekhnologii. 2 (2025) 87-93.