Funct. Mater. 2025; 32 (3): 441-445.

doi:https://doi.org/10.15407/fm32.03.441

Agarose gel structure study using dynamic light scattering

A. R. Imamaliyev1, I. I. Abbasov2, R. Sh. Rahimov3, Ch. A. Imamalizade2

1Insitute of Physics, H.Javid Ave.131, AZ-1143, Baku, Azerbaijan
2Azerbaijan State Oil and Industry University, Azadliq Ave.34, Baku, Azerbaijan Baku State University, Z.Khalilov Str.23, Baku, Azerbaijan

Abstract: 

The microstructure (particle size distribution) of the agarose hydrogel was investigated using the dynamic light scattering method. The results of measurements showed that there are two types of particles in the gel structure: 1) large particles, the sizes of which depend on the agarose concentration, temperature, and holding time at a given temperature; 2) small particles, the sizes of which weakly dependent on the above-mentioned factors. Analysis shows that small particles are free bispirals (double helices), while large particles are associations consisting of a large number of bispirals. The effect of hydrophobic and hydrophilic additives on the particle size distribution was also studied. Hydrophobic additive increases the number of free bispirals and they disappear when a hyrophilic substance is added to the gel.

Keywords: 
polymer, hydrogel, agarose, bispiral, suprafiber, dynamic light scattering
References: 

1. Y. Osada and K. Kajiwara, Gels Handbook, Academic Press, San Diego (2001).

2. V. K. Thakur, M. K. Thakur, S. I., Voicu, Polymer Gels: Perspectives and Applications, Springer, Singapore (2018)

3. M. Djabourov, K. Nishinary, S.B. Ross-Murphy, Physical Gels from Biological and Synthetic Polymers, Cambridge University Press (2018)

4. T. Sakai, Physics of Polymer Gels, Wiley-VCH, Weinheim (2020)

5. A. Ya. Malkin, S. R. Derkach, V. G. Kulichikhin, Gels, 9, 715 (2023)E 6. Y. Osada, J. P. Gong, Y. Tanaka, Journal of Macromolecular Science, C44, 87 (2004).

7. R.M. Ottenbrite, K. Park, T. Okano, Biomedical Applications of Hydrogels Handbook, Springer, Heidelbeg (2010)

8. Zh. Zheng, W. Shi et al., iScience 26, 14 (2023)E

9. K.C. Labropoulos, S. Rangarajan et al., Journal of American Ceramic Society, 84, 12 (2001)

10. K.C. Labropoulos, D.E.Niesz et al., Carbohydrate Polymers, 50, 393 (2002)

11. K.C. Labropoulos, D.E.Niesz et al., Garbohydrate Polymers, 50, 407 (2002)

12. E.A.Foegeding, C.Gonzales et al., Hydrocolloids, 8, 125 (1994)

13. U.Florjancic, M.Zumer, Acta Chemica Slovenica, 45, 419 (1998)

14. A.J. de Kerchove, M.Elimelech, Macromolecules, 39, 6558 (2006)

15. K.A. Ross, L.J. Pyrak-Nolte, O.H. Campanella, Hydrocolloids, 20, 79 (2006)

16. M. Shibayama, T. Norisuye, Bulletin of Chemical Society of Japan, 75, 641 (2002)

17. Kh. Lahrech, A. Safonane, J. Peayerellase, Physica A, 358, 207 (2005)

18. K Alam, J Umer, M Iqbal, A Hasan, , Journal of Physics: Conf. Series, 1455, 012012 (2020)

19. M. Ghebremedhin, S.Seiffert, T.A. Vilgis, Current Research in Food Science, 4, 436 (2021)

20. M.Tako, T. Teruya et al., Journal of Polymer and Biopolymer Physics Chemistry, 9, 13 (2021)

21. W.M. Kulicke, O. Arendt, Makromolecular Chemie, 26, 53 (1998)

22. J. Leor, S. Cohen, Annals of New York Academy of Sciences, 1015, 312 (2004)

23. M. Yılmaz, C. Ozic, I. Gok, in: Gel Electrophoresis: Principles and Basics Edited by S. Magdeldin, In Tech, Rijeka, 33 (2012).

24. R. Ziraldo, M. J. Shoura; A. Z. Fire, S. D. Levene, Nucleic Acids Research, 47, 16 (2019)

25. E.A. Masimov., A.R. Imamaliyev, A.H. Asadova, Modern Physics Letter B, 34, 1 (2020).

26. Burchard W. in: Harding SE, Settele DB, Bloomfield VA (eds) Laser light scattering in biochemistry, Royal Society of Chemistry, Cambridge, 3 (1992)

27. J.M. Guenet, Polymer Solvent Molecular Compounds, Elsevier Science, Amsterdam (2008)