Funct. Mater. 2025; 32 (3): 471-486.
Quaternary crystals CdZnTeSe: Growth via the vertical Bridgman method with different compositions of raw materials
1 Institute for Single Crystals, SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2 Helmut-Schmidt-Universität, Holstenhofweg 85, 22043 Hamburg, Germany
Indium-doped semiconductor crystals CdZnTeSe with various compositions were grown via the vertical Bridgman method under high-pressure argon. For the first time, these crystals were obtained via a combined method from a mixture of single and binary starting components. A theoretical analysis of the permissible reactions for obtaining multicomponent CdZnTeSe crystals from various compositions of starting materials was performed. The homogeneity of the distribution of the atomic composition of the obtained crystals and the electrical resistance (in the dark and under illumination) were studied. Crystals grown via the new combined method demonstrated the best homogeneity of composition and electrophysical properties.
1. Md.D. Alam, S.S. Nasim, S. Hasan, Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring, Progress in Nuclear Energy 140, 103918 (2021). https://doi.org/10.1016/j.pnucene.2021.103918
2. E. Dieguez, Chapter 3.04 - Growth of Cd0.9Zn0.1Te Bulk Crystals, in: Comprehensive Semiconductor Science and Technology, vol. 3, Elsevier B.V., 2011, pp. 170-201. https://doi.org/10.1016/B978-0-44-453153-7.00091-2
3. Z. Li, J. Cheng, F. Liu, Q. Wang, W.-W. Wen, G. Huang, Z. Wu, Research on the technological progress of CZT array detectors, Sensors 24(3), 725 (2024). https://doi.org/10.3390/s24030725
4. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, Ge Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects, Scientific Reports 9, 7303 (2019). https://doi.org/10.1038/s41598-019-43778-3
5. S.V. Naydenov, I.M. Pritula, Hardening of multi-component CdZnTeSe solid solutions: a theoretical approach, Appl. Phys. A 129, 812 (2023). https://doi.org/10.1007/s00339-023-07109-8
6. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications, Appl. Phys. Lett. 118, 152101 (2021). https://doi.org/10.1063/5.0048875
7. U.N. Roy, C.T. Trinh, H. Htoon, A.C. Jones, R. Cortes-Robles, A.A. Egarievwe, G.S. Camarda, S.U. Egarievwe, M. Drabo, R.B. James, Spatial variation of the low-temperature micro-photoluminescence of THM-grown CdZnTeSe, Materials Today Comm. 42, 111486 (2025). https://doi.org/10.1016/j.mtcomm.2024.111486
8. C. Szeles, M.C. Driver, Growth and properties of semi-insulating CdZnTe for radiation detector applications, SPIE Conf. on Hard X-Ray and Gamma-Ray Detector Physics and Applications, San Diego, California, July 1998, Proc. SPIE 3446, 1 (1998). http://dx.doi.org/10.1117/12.312878
9. F. Yang, W. Jie, M. Wang, X. Sun, N. Jia, L. Yin, B. Zhou, T. Wang, Growth of Single-Crystal Cd0.9Zn0.1Te Ingots Using Pressure Controlled Bridgman Method, Crystals 10(4), 261 (2020). https://doi.org/10.3390/cryst10040261
10. A.M. Martinez, P. Giudici, A.B. Trigubo, R. D′Elia, E. Heredia, R. Ramelli, R. Gonzalez, F. Aza, U. Gilabert, Crystalline Quality, Composition Homogeneity, Tellurium Precipitates/Inclusions Concentration, Optical Transmission, and Energy Band Gap of Bridgman Grown Single-Crystalline Cd1-xZnxTe (0 ≤ x ≤ 0.1), Materials 14(15), 4207 (2021). https://doi.org/10.3390/ma14154207
11. J.J. McCoy, S. Kakkireni, Z.H. Gilvey, S. K. Swain, A.E. Bolotnikov, K.G. Lynn, Overcoming Mobility Lifetime Product Limitations in Vertical Bridgman Production of Cadmium Zinc Telluride Detectors, J. of Electronic Materials 48, 4226-4234 (2019). https://doi.org/10.1007/s11664-019-07196-5
12. M. Unal, O.B. Balbasi, S.H. Sedani, M.C. Karaman, G. Celik, D. Bender, A.M. Genc, M. Parlak, R. Turan, Production of detector grade CdZnTe crystal with VGF furnace by analyzing segregation of Zn and In, J. of Crystal Growth 615, 127236 (2023). https://doi.org/10.1016/j.jcrysgro.2023.127236
13. H. Chen, S.A. Awadalla, K. Iniewski, P.H. Lu, F. Harris, J. Mackenzie, T. Hasanen, W. Chen, R. Redden, G. Bindley, I. Kuvvetli, C. Budtz-Jorgensen, P. Luke, M. Amman, J.S. Lee, A.E. Bolotnikov, G.S. Camarda, Y. Cui, A. Hossain, R.B. James; Characterization of large cadmium zinc telluride crystals grown by traveling heater method, J. Appl. Phys. 103(1), 014903 (2008). https://doi.org/10.1063/1.2828170
14. B. Hong, S. Zhang, L. Zheng, H. Zhang, C. Wang, B. Zhao, Studies on thermal and interface optimization for CdZnTe crystals by unseeded Traveling Heater Method, J. of Crystal Growth 546, 125776 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125776
15. J.W. Kleppinger, S.K. Chaudhuri, U.N. Roy, R.B. James, K.C. Mandal, Growth of Cd0.9Zn0.1Te1-ySey single crystals for room temperature gamma-ray detection, IEEE Trans. on Nucl. Sci. 68(9), 2429-2434 (2021). http://dx.doi.org/10.1109/TNS.2021.3077505
16. L. Martinez-Herraiz, A.F. Brana, J.L. Plaza, Vertical Gradient Freeze growth of two inches Cd1-xZnxTe1-ySey ingots with different Se content, J. of Crystal Growth 573, 126291 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126291
17. K. Kim, J. Franc, A.E. Bolotnikov, R.B. James, Photoluminescence of CdTe and CdZnTe compounds doped with 2% selenium, J. of Crystal Growth 626, 127478 (2024). https://doi.org/10.1016/j.jcrysgro.2023.127478
18. Q. Zheng, J. Crocco, H. Bensalah, P. Wellmann, A. Osvet, U. Kunecke, F. Dierre, O. Vela, J.M. Perez, E. Dieguez, Influence of the starting materials used in the crystal growth process of CZT for gamma ray radiation applications, J. of Crystal Growth 381, 15-21 (2013). http://dx.doi.org/10.1016/j.jcrysgro.2013.06.033
19. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Advances in CdZnTeSe for radiation detector applications, Radiation, 1(2), 123-130 (2021). https://doi.org/10.3390/radiation1020011
20. P. Atkins, J. de Paula, J. Keeler, Physical Chemistry, 12th edition, Oxford University Press, New York, 2023.
21. B. Park, Y. Kim, J. Seo, J. Byun, V. Dedic, J. Franc, A.E. Bolotnikov, R.B. James, K. Kim, Bandgap engineering of of Cd1-xZnxTe1-ySee (0 ≤ x ≤ 0.27, 0 ≤ y ≤ 0.026), Nucl. Instrum. Methods in Phys. Research Sec. A, 1036, 166836 (2022). https://doi.org/10.1016/j.nima.2022.166836
22. E. Scheil, Über die Eutektische Kristallization, Zeitschrift für Metallkunde 34, 70-76 (1942). https://doi.org/10.1515/ijmr-1957-480904
23. A. Yakimov, D.J. Smith, J. Choi, S.L. Araujo, Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique, Proc. SPIE 11114, Hard X-ray, Gamma-Ray, and Neutron Detector Physics XXI, 111141N (2019). https://doi.org/10.1117/12.2528542
24. L. Martinez-Herraiz, A.F. Brana, J.L. Plaza, Vertical Gradient Freeze Growth of two inches Cd1-xZnxTe1-ySey ingots with different Se content, Journal of Crystal Growth 573, 126291 (2021).