Absorption spectra of $Rb_{3x}Cs_{3-3x}Cu_2l_5$ solid solutions

E.N.Kovalenko*, V.K.Miloslavsky, O.N.Yunakova

V.Karazin Kharkiv National University, 4 Svobody Sq., 61077 Kharkiv, Ukraine *Scientific Physico-Technical Center, Ministry of Education and National Academy of Sciences of Ukraine, 1 Novgorodslaya St., 61145 Kharkiv, Ukraine

Received March 14, 2000

Thin films of $\text{Rb}_3\text{Cu}_2\text{I}_5$ ternary compound and $\text{Rb}_{3x}\text{Cs}_{3-3x}\text{Cu}_2\text{I}_5$ solid solutions have been synthesized for the first time and theirs absorption spectra at 90 K have been studied. The concentration dependences of 1s exciton band parameters (spectral position E_m , half-width Γ , forbidden gap E_g) are linear thus evidencing a weak effect of small-scale fluctuations in the solid solution composition of the absorption spectrum and the exciton localization in the Cul-sublattice. The Davydov splitting of exciton bands has been found due to the exciton transfer between non-equivalent Cul_4^{3-} tetrahedrons in double chains.

Впервые синтезированы тонкие пленки тройного соединения $Rb_3Cu_2l_5$ и твердых растворов $Rb_{3x}Cs_{3-3x}Cu_2l_5$ и исследован их спектр поглощения при 90 К. Концентрационная зависимость параметров 1s-экситонных полос (спектрального положения E_m , полуширины Γ , ширины запрещенной зоны E_g) имеет линейный характер, что указывает на слабое влияние мелкомасштабных флуктуаций состава твердых растворов на их спектр поглощения и свидетельствует о локализации экситонов в Cul-подрешетке. Обнаружено давыдовское расщепление экситонных полос за счет переноса экситонов между неэквивалентными тетраэдрами Cul_4^{3-} в двойных цепях.

The former studies of Rbl-Cul alloys phase diagrams have shown complex ternary compounds Rb₂Cul₃ and RbCu₂l₃ to be formed in that system [1] whereas $Cs_3Cu_2l_5$ and $CsCu_2I_3$ compounds have been found in Csl-Cul system [2]. The electron absorption spectra of thin films of Cul-Rbl alloys at the Cul molar concentrations y = 0.33 and y=0.67 answering to compounds indicated in [1] were studied in [3] while those of Csl-Cul ones at y = 0.4 and y = 0.67, in [4]. RbCu₂l₃ and CsCu₂l₃ are iso-structural compounds and have very similar crystal lattice parameters [2, 5] and rather similar absorp tion spectra [3, 4]; this is evidences also by spectra of their solid solutions [6]. At the same time, the absorption spectrum of the assumed Rb_2Cul_3 (y = 0.33) is similar to that of $Cs_3Cu_2l_5$ in its structure and spectral positions of main exciton bands and differs considerably from that of the close compound Rb_2Agl_3 [7]. These facts give rise to doubts in the Rb_2Cul_3 existence and allow to suppose that in fact, the absorption spectrum of $Rb_3Cu_2l_5$ containing excess RbI is shown in [3]. The existence of $Rb_3Cu_2l_5$ isostructural to $Cs_3Cu_2l_5$ is mentioned in [5] but the compound was not obtained in its pure form.

To solve the problem of complex compounds existence in the Rbl-Cul system, we have studied the absorption spectra of the films within the concentration range $0.3 \le y \le 0.4$ and their electron diffraction patterns (EDP); spectra of Rb_{3x}Cs_{3-3x}Cu₂l₅ solid solutions have been studied as well.

The thin films were prepared by in vacuo thermal evaporation of Cul and Rbl mix-