Specific photoelectric and optical properties of CdS/CdTe film heterosystems with solid solution interlayers

B.T.Boyko, G.S.Khrypunov, O.P.Chernykh

Kharkiv State Polytechnical University, 21 Frunze St., 61002 Kharkiv, Ukraine

Received April 1, 1999

Spectral dependence of photosensitivity has been studied for ITO/CdTe/Au/Cu and ITO/CdS/CdTe/Au/Cu film heterosystems. When illuminated from the ITO side, ITO/CdS/CdTe/Au/Cu heterosystems show a photo-response maximum corresponding to absorption of 0.87 μ m wavelength photons. This is due to formation of CdS_xTe_{1-x} solid solutions having the energy gap width less than that in CdTe layer. Basing on optical spectra of transmission coefficient, a photosensitivity range has been selected corresponding to the contribution of non-equilibrium charge carriers generated in the solid solution interlayer.

Исследована спектральная зависимость фоточувствительности пленочных гетеросистем ITO/CdTe/Au/Cu и ITO/CdS/CdTe/Au/Cu. При освещении гетеросистемы ITO/CdS/CdTe/Au/Cu со стороны ITO максимум фоточувствительности наблюдался при поглощения фотонов с длиной волны 0.87 мкм. Это обусловлено формированием твердых растворов $CdS_{x}Te_{1-x}$ с шириной запрещенной зоны меньше, чем в слое CdTe. При исследовании оптических спектров коэффициента пропускания, был выбран интервал фоточувствительности, соответствующий вкладу неравновесных носителей заряда, генерированных в области варизонной прослойки твердых растворов.

The pCdTe/nCdS heterojunction is a great interest from the standpoint of thin-film solar element development. The theoretical efficiency of that heterojunction is 27 % [1]. It is also well-known that it is just the misfit between crystal lattice parameters of CdS and CdTe that is the main factor influencing negatively the parameters of a real nCdS-pCdTe heterojunction [1].

Consideration of literature data [2, 3] has shown that when developing photoelectric devices based on CdS/CdTe films, a great deal of attention is given today to the problem of possible presence of CdS_xTe_{1-x} solid solutions at the CdS-CdTe phase interface. Those solid solutions exhibit a band gap width different from those of CdS and CdTe layers [6]. Analysis of spectral dependences of photo-response and light ab

sorption coefficient is among the most prompt methods to study the band gap width of semiconductors. Therefore, in this work, the CdS/CdTe film heterosystems were studied using photoelectric and optical methods to identify the solid solutions.

Glass substrates with deposited transparent conductive ITO layers were used to prepare CdTe-based heterosystems. 0.5 μ m thick CdS layers were deposited onto ITO surface using the vacuum evaporation at 150°C. The CdS layers were recrystallized at 450°C. Then, 4 μ m thick CdTe films were deposited onto CdS layers (when preparing ITO/CdS/CdTe heterosystems) or onto ITO surface (when preparing ITO/CdTe ones). The substrate temperature was 300°C in all cases, the deposition was carried out without the vacuum deterioration. Then CdCl₂

Functional materials, 7, 3, 2000