The T_c elevation effects and thermal and magnetic treatment of $YBa_2Cu_3O_{7-\delta}$ polycrystals

L.Z.Lubyany, A.A.Mamalui, I.N.Sablin

Kharkiv State Polytechnical University, 21 Frunze St., 61002 Kharkiv, Ukraine

Received June 10, 1999

Effect of thermal and pulse magnetic treatment on the YBa₂Cu₃O_{7- δ} polycrystals critical parameters has been studied. The state of increased T_c obtained by heat treatment has been found to relax in a pulse magnetic field. For the H_{c1} <H< H_{c2} (mixed state), the pulse magnetic field effect has been considered under account for the vortex lattice pinning on the crystal structure defects.

Проведено экспериментальное исследование влияния термической и импульсной магнитной обработки на критические параметры поликристаллов $YBa_2Cu_3O_{7-\delta}$. Обнаружено, что состояние с повышенным T_c , полученное в результате термообработки, релаксирует при приложении импульсного магнитного поля. Для $H_{c1} < H < H_{c2}$ (смешанное состояние) анализ влияния импульса магнитного поля был сделан на основе учета пиннинга вихревой решетки на дефектах кристаллической структуры.

At least two temperature intervals (130-250 K and 350-700 K) where the kinetic and thermodynamic properties are anomalous are observed within the temperature region of $YBa_2Cu_3O_{7-\delta}$ ortho phase. fixation experiments on From of YBa₂Cu₃O_{7–δ} anomalous states using quenching and study of critical parameters (T_c, I_c) behaviour and the normal state properties (electric resistance, thermal expansion), the diffusion redistribution of oxygen vacancies has been concluded to predominate in those intervals, including their ordering and disordering processes [1-3]. The state with ordered vacancy distribution, referred to as the vacancy superstructure (VSS) is characterized by substantially enhanced critical parameters (T_c, I_c) . The temperature regions where that kind of VSS exists in equilibrium (or quasi-equilibrium) are rather narrow. In the non-equilibrium state, the VSS are unstable and become relaxed rather easily already under heating up to 120-130 K. This work is devoted to

Functional materials, 7, 3, 2000

the further experimental investigation of the defect redistribution in $\rm YBa_2Cu_3O_{7-\delta}$ in the temperature region 100–190 K under isothermal exposures, study of the quenched defects influence on T_c as well as to study of the quenched defect state resistance against heat and magnetic treatments.

Polycrystalline $YBa_{2}Cu_{3}O_{7-\delta}$ samples with initial T_c values from 91.5 to 92.4 K were studied. The oxygen index values were determined from the lattice parameters at 293 K and were $\delta \leq 0.1$. The samples were shaped as 0.8 mm thick flat discs of 16 mm in diameter. The T_c values were measured from temperature dependences of magnetic susceptibility. The heat and magnetic treatments were carried out as follows. First, the samples were cooled down to 78 K and the initial state T_c was measured. Then the heating up to $T_a \approx 160$ K (the VSS existence temperature) was carried out followed by a 30 min exposure to realize the state with an enhanced critical temperature ($T_c = 103$ K). The samples were then quenched down to