Spectroscopy of interionic interactions in nitrite aqueous solutions

M.U.Bilyi, G.I.Gaididei, V.P.Sakun

T.Shevchenko Kyiv National University, Physics Department, 6 Acad. Glushkov Ave., 03022 Kyiv, Ukraine

Correlation has been studied between energy shifts of the vibrational and electron-vibrational absorption bands for ${}^{1}A_{1} \rightarrow {}^{1}B_{1}$ and ${}^{1}A_{1} \rightarrow {}^{1}A_{2}$ transitions of the impurity molecular anion NO₂ in MNO₂ aqueous solutions (M = Li, Na, K, Cs) with its geometrical size. It is shown that the shortwave shift of the bands is due to decreasing nuclear skeleton area.

Изучена связь между энергетическими сдвигами колебательных и электронно-колебательных полос поглощения переходов ${}^{1}A_{1} \rightarrow {}^{1}B_{1}$ и ${}^{1}A_{1} \rightarrow {}^{1}A_{2}$ примесного аниона NO₂ в водных растворах MNO₂ (M = Li, Na, K, Cs) и его геометрическими размерами. Показано, что уменьшение площади ядерного остова аниона вызывает коротковолновый сдвигуказанных полос.

The investigation of interionic interactions in aqueous solutions of nitrite salts MNO_2 (M = Li, Na, K, Cs) was the goal of this work. The influence of such interactions on the geometric structure, vibrational and electron-vibrational absorption ${}^{1}A_1 \rightarrow {}^{1}B_1$ and ${}^{1}A_1 \rightarrow {}^{1}A_2$ spectra of the NO₂ molecular anion (MA) in aqueous solutions has been studied at 4.2 and 300 K.

The NO₂ molecular anion ($C_{2\nu}$ symmetry group) exhibits three undegenerate intramolecular vibrations: ν_1 (full symmetric stretching mode), ν_2 (full symmetric bending mode) and ν_3 (asymmetrical stretching mode). Basing on the experimental frequency values ν_1 , ν_2 , ν_3 , the constants of the equilibrium geometric configuration of NO₂ anion were calculated in the valence forces approach. ν_1 and ν_2 values were taken from [1]. Our calculations are of estimating character.

We used the formulae derived in [2]:

$$4\pi^2 v_3^2 = \left(1 + \frac{2m_0}{m_N} \sin^2 \alpha\right) \frac{f_r}{m_0},$$
 (1)

$$4\pi^{2}(v_{1}^{2}+v_{2}^{2}) = \left(1+\frac{2m_{0}}{m_{N}}\cos^{2}\alpha\right)\frac{f_{r}}{m_{0}} + (2)$$
$$+\frac{2}{m_{0}}\left(1+\frac{2m_{0}}{m_{N}}\sin^{2}\alpha\right)f_{\alpha},$$
$$16\pi^{4}v_{1}^{2}v_{2}^{2} = 2\left(1+\frac{2m_{0}}{m_{N}}\right)\frac{f_{r}f_{\alpha}}{m_{0}^{2}},$$
$$(3)$$

where v_i are expressed in s⁻¹, m_0 and m_N are the masses (in g) of O and N atoms, respectively, f_r and f_{α} (in dyn/cm) are the force constants characterizing changes in the N-O bond length and the angle $\angle ONO$ (2 α), respectively. The estimation of the N-O bond length (r_{NO}) was carried out using the empirical formula of Badger [3]

$$f_r = 1.86 \cdot 10^5 \cdot (r_{\rm NO} - 0.68)^{-3},$$
 (4)

where f_r is in dyn/cm and the N–O bond length $r_{\rm NO}$ in Å. Basing on obtained $r_{\rm NO}$ and 2α values, the area (σ) for the equilibrium configuration of the NO₂ anion nuclear skeleton was also evaluated.

Functional materials, 7, 3, 2000

540