Funct. Mater. 2025; 32 (1): 35-41.

doi:https://doi.org/10.15407/fm32.01.35

Sodium, magnesium and carbonate-containing calcium phosphates: synthesis and investigation

N. Yu. Strutynska1, Ye. O. Komashchenko1, O.V. Livitska2, I.I. Grynyuk3, D.K. Prochorenko3

1Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
2Enamine Ltd, 78 Winston Churchill Str., 02094, Kyiv, Ukraine
3Igor Sikorsky Kyiv Polytechnic Institute, Peremohy av., 37, 03056, Kyiv, Ukraine

Abstract: 

The results of calcium phosphates formation in an aqueous solution of Сa2+-Mg2+-Na+-PO43--CO32--NO3– systems at different molar ratios of Сa2+:Mg2+:Na+:PO43-:CO32– = (10-х-y/2–z/2) : х : y : (6-z) : z, (x = 0.25, 0.5, 0.75; у = 0.25, 0.5, 0.75, 1.0; z = 0.5, 1.0) at a temperature of 25°С with subsequent heating at 600°С for 2 hours are presented. In the case of a system with molar ratios Сa2+:Mg2+:Na+:PO43-:CO32– = (10-х-y/2–z/2) : х : y : 5.5 : 0.5 for x = 0.25 regardless of the amount of sodium cations (y = 0.25–1.0), modified apatite-type calcium phosphates (hexagonal system, space group Р63/m) were obtained. For system at a fixed sodium content (y = 0.25), with an increase of magnesium amount (x = 0.5, 0.75), the formation of biphasic calcium phosphates (a mixture of phases based on β-Са3(РО4)2 – trigonal system, space group R-3c and Са10(РО4)6(ОН)2) was founded. An increase in the amount of carbonate in the initial solution to a molar ratio of PO43-:CO32-= 5 : 1 also led to the formation of biphasic calcium phosphates with different contents of main components ((47-65wt%) (β-Са3(РО4)2 + (53–35wt%) Са10(РО4)6(ОН)2) with an increase in the amount of sodium from y = 0.5 to 1.0. FTIR spectroscopy data confirmed the partial substitution of phosphate-anion by carbonate groups in the structure of apatite-type calcium phosphate. It was found that biphasic calcium phosphates containing a complex of trace elements are characterized by higher activity in a model solution than monophasic apatite-related carbonate-containing calcium phosphates of similar composition, and can be used in the future to restore bone tissue.

Keywords: 
trace elements; magnesium; sodium; hydroxyapatite; tricalcium phosphate.
References: 
1. S. Bhat, U.T. Uthappa, T. Altalhi, H.-Y. Jung, M. D. Kurkuri, ACS Biomater. Sci. Eng., 8, 10, 4039 (2022).
https://doi.org/10.1021/acsbiomaterials.1c00438
 
2. M. Gruselle, K. Tõnsuaadu, P. Gredin, C. Len, Molecular Catalysis, 519, 112146 (2022).
https://doi.org/10.1016/j.mcat.2022.112146
 
3. S. George, D. Mehta, V.K. Saharan, Rev. Chem. Engin, 36, 3, 369 (2020).
https://doi.org/10.1515/revce-2017-0101
 
4. A. Fihri, C. Len, R.S. Varma, A. Solhy, Coord. Chem. Rev., 347, 48 (2017).
https://doi.org/10.1016/j.ccr.2017.06.009
 
5. E. Fiume, G. Magnaterra, A. Rahdar, E. Verné, F. Baino, Ceramics, 4, 4, 542 (2021).
https://doi.org/10.3390/ceramics4040039
 
6. A. Galotta, Ö. Demir, O. Marsan, V.M. Sglavo, D. Loca, C. Combes, J. Locs, Nanomaterials, 14, 5, 441 (2024).
https://doi.org/10.3390/nano14050441
 
7. T.H.M. Mysore, A.Y. Patil, C. Hegde, M.A. Sudeept, R. Kumar, M.E.M. Soudagar, I.M.R. Fattah, European Polymer Journal, 209, 112842 (2024).
https://doi.org/10.1016/j.eurpolymj.2024.112842
 
8. I. Cacciotti, Int J Appl Ceram Technol, 16, 1864 (2019).
https://doi.org/10.1111/ijac.13229
 
9. R. Yotsova, S. Peev, Pharmaceutics, 16, 2, 291 (2024).
https://doi.org/10.3390/pharmaceutics16020291
 
10. K. Shikawa, K. Hayashi, Sci Technol Adv Mater., 22, 1, 683 (2021).
 
11. S.L. Wong, C. Drouet, A. Deymier, Materialia, 29, 101795 (2023).
https://doi.org/10.1016/j.mtla.2023.101795
 
12. M. Nabiyouni, Y. Ren, S. B. Bhaduri, Materials Science and Engineering: C, 52, 11 (2015).
https://doi.org/10.1016/j.msec.2015.03.032
 
13. J.-M. Yu, H.-C. Choe, Applied Surface Science, 432, 294 (2018).
https://doi.org/10.1016/j.apsusc.2017.06.263
 
14. Z. Geng, R. Wang, Z. Li, Z. Cui, S. Zhu, Y. Liang, Y. Liu, B. Huijing, X. Li, Q. Huo, Z. Liu, X. Yang, J. Biomat. App, 31, 1, 140 (2016).
https://doi.org/10.1177/0885328216633892
 
15. A. Ezerskyte-Miseviciene, I. Bogdanoviciene, A. Zilinskas, A. Beganskiene, A. Kareiva, J Aust Ceram Soc, 56, 839 (2020).
https://doi.org/10.1007/s41779-019-00402-x
 
16. P.N. Lim, R.N. Lam, Y.F. Zheng, E.S. Thian, Materials Letters, 172, 193 (2016).
https://doi.org/10.1016/j.matlet.2016.03.005
 
17. B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Arab.J. Chem., 11, 5, 645 (2018).
https://doi.org/10.1016/j.arabjc.2016.05.010
 
18. S. S. Singh, A. Roy, B. Lee, I. Banerjee, P. N. Kumta, Mater.Sc.Eng: C, 67, 636 (2016).
https://doi.org/10.1016/j.msec.2016.04.076
 

Current number: