Funct. Mater. 2025; 32 (1): 97-107.
Application of cellulose nanofibrils in polyvinyl alcohol composite films
Yuncheng Vocational and Technical University, Shanxi, Yuncheng 0443000, China
Fenton cellulose nanofibrils (F-CNF) were prepared by Fenton oxidation with the followed homogenization and then F-CNF /PVA composite films with the F-CNF additives from 1% to 20% were prepared by solution casting method. Scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), Fourier transform infrared spectroscopy (FTIR), universal tensile testing machine, swelling property detection, thermogravimetric analysis and soil burial degradation rate test were used to characterize the microstructure, chemical structure, mechanical properties, hygroscopicity, thermal stability and biodegradability of the composites. The results showed that a large number of hydrogen bonds were formed between F-CNF and PVA molecules and an acetal reaction occurred. F-CNF can be uniformly dispersed in PVA matrix, and both have good interfacial compatibility. After the addition of F-CNF, the tensile strength and elastic modulus of the composite films were significantly improved, the water absorption of the composite material was reduced, and its thermal stability was improved. When the amount of F-CNF was 15%, the tensile strength and Young’s modulus of the composite films were 65.27 MPa and 1460.32 MPa, respectively, which were 217.77% and 830.69% higher than those of pure PVA.
1. O. Nechyporchuk, M. N. Belgacem, J.Bras, Industrial Crops and Products, 93, 2, (2016). https://doi.org/10.1016/j.indcrop.2016.02.016 |
||||
2. ZHANG Sihang, FU Runfang, DONG Liqin, et al. China Pulp Paper, 36(1), 67, (2017) | ||||
3. M. Bulota, K. Kreitsmann, M. Hughes, et al. Journal of Applied Polymer Science, 126, 448 (2012). https://doi.org/10.1002/app.36787 |
||||
4. Azizi Samir MAS, F. Alloin, M. Paillet, et al., Macromolecules, 37(11), 4313 (2004). https://doi.org/10.1021/ma035939u |
||||
5. T. Zimmermann, E. Pöhler, T. Geig, Advanced Engineering Materials, 6(9), 754 (2004). https://doi.org/10.1002/adem.200400097 |
||||
6. T. Zimmermann, E. Pöhler, P. Schwaller, Advanced Engineering Materials, 7(12), 1156, (2005). https://doi.org/10.1002/adem.200500157 |
||||
7. L.I. Qun, WANG Aijiao, WANG Zehai.A Method for Preparation of Nanocellulose by Iiron-catalyzed Hydrogen Peroxide Oxidation.CN, 2017113435931.2018-01-01. | ||||
8. Q. Li, A.J. Wang, K.Y. Long, et al. ACS Sustainable Chemistry & Engineering, 23(2), 1129, (2018). | ||||
9. D.F. Guay, B.J.W. Cole, R.C. Fort, et al., Journal of Wood Chemistry and Technology, 20(4), 375, (2000). https://doi.org/10.1080/02773810009351890 |
||||
10. D.F. Guay, B.J.W. Cole, R.C. Fort, et al., Journal of Wood Chemistry and Technology,, 21(1), 67, (2001). https://doi.org/10.1081/WCT-100102655 |
||||
11. DUAN Lin-juan, DUAN Yan, M.A. Wei, et al. China Pulp & Paper, 39 (1), 9, (2020). | ||||
12. E. Fortunati, D. Puglia, M. Monti, et al., Journal of Applied Polymer Science, 128(5), 3220, (2013). https://doi.org/10.1002/app.38524 |
||||
13. A.J. Uddin, J. Araki, Y.Gotoh, Biomacromolecules, 12(3), 617 (2011). https://doi.org/10.1021/bm101280f |
||||
14. S. Dong, M. Roman, Journal of the American Chemical Society, 129(45), 13810, (2007). https://doi.org/10.1021/ja076196l |
||||
15. Duan Linjuan, Liu Rongrong, Li Qun, Starch-starke, 72(11-12), 1900259, (2020). https://doi.org/10.1002/star.201900259 |
||||
16. HUANG Xiaolei, LIU Wen, LIU Qunhua, et al.China Pulp Paper, 34(1), 18 (2015). | ||||
17. R.T. O'Connor, E.F. DuPré, D. Mitcham, Textile Research Journal, 28, 382, (1958). https://doi.org/10.1177/004051755802800503 |
||||
18. S. Ostovareh, K. Karimi, A. Zamani.Industrial Crops and Products, 66, 170, (2015). https://doi.org/10.1016/j.indcrop.2014.12.023 |
||||
19. BAI Lu, ZHANG Li-Ping, QU Ping, et al. Chemical Journal of Chinese Universities, 32(4), 984, (2011). | ||||
20. Chen Yangmei, Wang Yan, Ma Yongwen, et al., Cellulose, 17(2), 329, (2010). https://doi.org/10.1007/s10570-009-9368-z |
||||
21. M. Schwanninger, J.C. Rodrigues, H. Pereirac, et al.Vibrational Spectroscopy, 36, 23, (2004). https://doi.org/10.1016/j.vibspec.2004.02.003 |
||||
22. L.V. Hui-lin, M.A. Yong-wen, WAN Jin-quan, et al. Transactions of China Pulp and Paper, 26(1), 1, (2011). | ||||
23. SangYoun Oh, Dong Il Yoo, Younsook Shinet, et al. Carbohydrate Research, 340, 2376, (2005). https://doi.org/10.1016/j.carres.2005.08.007 |
||||
24. J. Wang, C. Gao, Y. Zhang, et al. Materials Science & Engineering C, 30, 214, (2010). https://doi.org/10.1016/j.msec.2009.10.006 |
||||
25. L.E. Millon, C.J. Oates, W.K. Wan, J Biomed Mater Res Part B: Appl Biomater, 90B(2), 922, (2009). https://doi.org/10.1002/jbm.b.31364 |
||||
26. F. Vilaseca, J.A. Mendez, J.P. Lopez, et al., Chemical Engineering Journal, 138(1), 586, (2008). https://doi.org/10.1016/j.cej.2007.07.066 |
||||
27. A. Kelly, W.R. Tyson, Journal of the Mechanics and Physics of Solids, 13(6), 329, (1965). https://doi.org/10.1016/0022-5096(65)90035-9 |
||||
28. Azizi Samir MAS, F. Alloin, M. Paillet, et al. Macromolecules, 37(11), 4313, (2004). https://doi.org/10.1021/ma035939u |
||||
29. T. Zimmermann, E. Pöhler, T. Geiger, Advanced Engineering Materials, 6(9), 754. (2004). https://doi.org/10.1002/adem.200400097 |
||||
30. T. Zimmermann, E. Pöhler, P. Schwaller, Advanced Engineering Materials, 7(12), 1156, (2005). https://doi.org/10.1002/adem.200500157 |
||||
31. V. Sanna V. Sauli H. Harri et al., Cellulose, 21, 3561, (2014). https://doi.org/10.1007/s10570-014-0347-7 |
||||
32. Q. Kaiyan N.N. Anil, Composites Science and Technology, 72, 1588, (2012) https://doi.org/10.1016/j.compscitech.2012.06.010 |
||||
33. K. Abe S. IwamotoH. Yano, Biomacromolecules, 8(10), 3276, (2007). https://doi.org/10.1021/bm700624p |