Funct. Mater. 2025; 32 (1): 115-125.

doi:https://doi.org/10.15407/fm32.01.115

Majorana and Dirac fermion excitations in La0.15Sm0.85MnO3+δ, controlled by external magnetic field

F.N. Bukhanko

Donetsk Institute for Physics and Engineering named after. O.O. Galkin NASU, 46 Nauky ave., Kyiv, 03028, Ukraine

Abstract: 

The possibility of excitation of Majorana and massless Dirac fermions in self-doped manganites controlled by an external magnetic field is established. It is shown that in the ZFC mode of magnetization measurement, the excitation of Majorana fermions dominates, while in the FC mode the main contribution to the “supermagnetization” of the sample is made by the excitation of Dirac fermions. During remagnetization of La0.15Sm0.85MnO3+δ manganites at 4.2 K, the single and double cone-shaped features of M(H) were found near H = 0 in the magnetization reversal isotherms. These peculiarities of magnetization demonstrate the evolution of the Dirac fermions magnetic excitations at quantum phase transitions in the 2D Dirac semimetal, induced by the merging and splitting of two Dirac points. The evolution of thermal excitation of two Majorana zero modes in the first and second Landau band with an increase in the strength of the external magnetic field was also studied. Аn alternating permutation of the spiky double peaks and truncated hill features of the magnetization M(T) in La0.15Sm0.85MnO3+δ may be explained by the existence of two well-known in the literature hidden states CSL1 and CSL2 of the chiral quantum spin liquid in this material.

Keywords: 
2D Dirac semimetal, Dirac and Majorana fermions, topological phase transitions, single and double cones-like features magnetization, Majorana zero modes
References: 
1. S.-Y. Yang, H. Yang, E. Derunova et al., Advances in Physics, X,1 (2017).
 
2. M. Goerbig G.Montambaux, Matière de Dirac, S'eminaire Poincar'e, XVIII: 23 (2014).
 
3. A. Kitaev, Annals of Physics, 321, 2 (2006).
https://doi.org/10.1016/j.aop.2005.10.005
 
4. H. Yao, S.A. Kivelson, Phys.Rev. Lett., 99, 247203 (2007).
https://doi.org/10.1103/PhysRevLett.99.247203
 
5. H.C. Jiang, Z.C. Gu, X.L. Qi et al., Phys. Rev. B, 83, 245104 (2011).
https://doi.org/10.1103/PhysRevB.83.245104
 
6. S. Trebst, P. Werner, M. Troyer et al., Phys.Rev.Lett., 98, 070602 (2007).
https://doi.org/10.1103/PhysRevLett.98.070602
 
7. J. Vidal, S. Dusuel, K.P. Schmidt,, Phys. Rev. B, 79, 033109 (2009).
https://doi.org/10.1103/PhysRevB.79.033109
 
8. I.S., Tupitsyn, A. Kitaev, N.V. Prokof'ev et al, Phys. Rev. B, 82, 085114 (2010).
https://doi.org/10.1103/PhysRevB.82.085114
 
9. S. Dusuel, M. Kamfor, R. Orus et al., Phys. Rev. Lett., 106, 107203 (2011).
https://doi.org/10.1103/PhysRevLett.106.107203
 
10. E. Fradkin, S.H. Shenker, Phys. Rev. D, 19, 3682 (1979).
https://doi.org/10.1103/PhysRevD.19.3682
 
11. J. Knolle, D.L. Kovrizhin, J.T. Chalker et al., Phys. Rev. Lett., 112, 207203 (2014).
https://doi.org/10.1103/PhysRevLett.112.207203
 
12. K.S. Tikhonov, M.V. Feigelman, Phys. Rev. Lett., 105, 067207 (2010).
https://doi.org/10.1103/PhysRevLett.105.067207
 
13. J. Knolle, D.L. Kovrizhin, J.T. Chalker et al., Phys. Rev. B, 92, 115127 (2015).
https://doi.org/10.1103/PhysRevB.92.115127
 
14. V. Lahtinen, New J. Phys., 13, 075009 (2011).
https://doi.org/10.1088/1367-2630/13/7/075009
 
15. G. Baskaran, S. Mandal, R. Shankar, Phys. Rev. Lett., 98, 247201 (2007)
https://doi.org/10.1103/PhysRevLett.98.247201
 
16. J. Knolle, R. Moessner, Annu. Rev. Condens. Matter Phys.10, 451 (2019).
https://doi.org/10.1146/annurev-conmatphys-031218-013401
 
17. T. Senthil, A. Vishwanath, L. Balents et al., Science, 303, 1490 (2004).
https://doi.org/10.1126/science.1091806
 
18. A.W. Sandvik, Phys. Rev. Lett., 98, 227202 (2007).
https://doi.org/10.1103/PhysRevLett.98.227202
 
19. J. Wang, S. Deng, Z. Liu et al., Natl. Sci. Rev, 2 (1), 22 (2015).
 
20. L.Tarruell, D. Greif, T. Uehlinger et al., arXiv:1111.5020v2 cond-mat.quant-gas. 25 Jun 2013, 1-6.
 
21. Z. Li, Z. Liu, Z. Liu, Nano Research, 10(6), 2005 (2017).
https://doi.org/10.1007/s12274-016-1388-z
 
22. G. Montambaux, L.-K. Lim, J.-N. Fuchs et al., Phys. Rev. Lett., 121, 256402 (2018).
https://doi.org/10.1103/PhysRevLett.121.256402
 
23. G. Montambaux, F. Piéchon, J.-N. Fuchs et al., arXiv:0907.0500v1 cond-mat.mes-hall. 2 Jul 2009, 1 - 18.
 
24. J. Peng, P.J. Chen, Y. Duan et al., AIP Advances, 5, 037132 (2015).
https://doi.org/10.1063/1.4916272
 
25. D.V. Efremov, D.I. Khomskii, Phys. Rev. B, 72, 012402. (2005).
https://doi.org/10.1103/PhysRevB.72.012402
 
26. F.N. Bukhanko, A.F. Bukhanko, Fiz.Tverd.Tela, 57, 1098 (2015).
https://doi.org/10.1134/S1063783415060062
 
27. F.N. Bukhanko, A.F. Bukhanko, Fiz.Tverd.Tela, 61, 2493 (2019).
 
28. D.V. Khveshchenko, W.F. Shively, arXiv:cond-mat/0510519v3 cond-mat.str-el. 21 Apr 2006.
 
29. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett., 69, 172 (1992).
https://doi.org/10.1103/PhysRevLett.69.172
 
30. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett., 77, 3589 (1996).
https://doi.org/10.1103/PhysRevLett.77.3589
 
31. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B, 63, 134421 (2001).
https://doi.org/10.1103/PhysRevB.63.134421
 
32. F.N. Bukhanko, A.F. Bukhanko, Fiz. Nizk. Temp. 47, 1021 ( 2021).
https://doi.org/10.1063/10.0006569
 
33. K. Laubscher, J. Klinovaja, arXiv:2104.14459v2 cond-mat.mes-hall. 13 Aug 2021.
 
34. G. Moore, N. Read, Nucl. Phys. B, 360, 362 (1991).
https://doi.org/10.1016/0550-3213(91)90407-O
 
35. G.E. Volovik, JETP Lett., 70, 609 (1999).
https://doi.org/10.1134/1.568223
 
36. N. Read, D. Green, Phys. Rev. B, 61, 10267 (2000).
https://doi.org/10.1103/PhysRevB.61.10267
 
37. T. Senthil, M.P.A. Fisher, Phys. Rev. B, 61, 9690 (2000).
https://doi.org/10.1103/PhysRevB.61.9690
 
38. D.A. Ivanov, Phys. Rev. Lett., 86, 268 (2001).
https://doi.org/10.1103/PhysRevLett.86.268
 
39. G.E. VolovikThe Universe in a Helium Droplet (Oxford University Press, Oxford, 2003).
 
40. G.E. Volovik, JETP Lett. 90, 398-401. (2009)
https://doi.org/10.1134/S0021364009170172
 
41. A.Y. Kitaev, Ann. Phys., 303, 2 (2009).
https://doi.org/10.1016/S0003-4916(02)00018-0
 
42. C. Nayak, S.H. Simon, A. Stern et al., Rev.Mod. Phys., 80, 1083 (2008).
https://doi.org/10.1103/RevModPhys.80.1083

Current number: