Funct. Mater. 2025; 32 (1): 115-125.
Majorana and Dirac fermion excitations in La0.15Sm0.85MnO3+δ, controlled by external magnetic field
Donetsk Institute for Physics and Engineering named after. O.O. Galkin NASU, 46 Nauky ave., Kyiv, 03028, Ukraine
The possibility of excitation of Majorana and massless Dirac fermions in self-doped manganites controlled by an external magnetic field is established. It is shown that in the ZFC mode of magnetization measurement, the excitation of Majorana fermions dominates, while in the FC mode the main contribution to the “supermagnetization” of the sample is made by the excitation of Dirac fermions. During remagnetization of La0.15Sm0.85MnO3+δ manganites at 4.2 K, the single and double cone-shaped features of M(H) were found near H = 0 in the magnetization reversal isotherms. These peculiarities of magnetization demonstrate the evolution of the Dirac fermions magnetic excitations at quantum phase transitions in the 2D Dirac semimetal, induced by the merging and splitting of two Dirac points. The evolution of thermal excitation of two Majorana zero modes in the first and second Landau band with an increase in the strength of the external magnetic field was also studied. Аn alternating permutation of the spiky double peaks and truncated hill features of the magnetization M(T) in La0.15Sm0.85MnO3+δ may be explained by the existence of two well-known in the literature hidden states CSL1 and CSL2 of the chiral quantum spin liquid in this material.
1. S.-Y. Yang, H. Yang, E. Derunova et al., Advances in Physics, X,1 (2017). | ||||
2. M. Goerbig G.Montambaux, Matière de Dirac, S'eminaire Poincar'e, XVIII: 23 (2014). | ||||
3. A. Kitaev, Annals of Physics, 321, 2 (2006). https://doi.org/10.1016/j.aop.2005.10.005 |
||||
4. H. Yao, S.A. Kivelson, Phys.Rev. Lett., 99, 247203 (2007). https://doi.org/10.1103/PhysRevLett.99.247203 |
||||
5. H.C. Jiang, Z.C. Gu, X.L. Qi et al., Phys. Rev. B, 83, 245104 (2011). https://doi.org/10.1103/PhysRevB.83.245104 |
||||
6. S. Trebst, P. Werner, M. Troyer et al., Phys.Rev.Lett., 98, 070602 (2007). https://doi.org/10.1103/PhysRevLett.98.070602 |
||||
7. J. Vidal, S. Dusuel, K.P. Schmidt,, Phys. Rev. B, 79, 033109 (2009). https://doi.org/10.1103/PhysRevB.79.033109 |
||||
8. I.S., Tupitsyn, A. Kitaev, N.V. Prokof'ev et al, Phys. Rev. B, 82, 085114 (2010). https://doi.org/10.1103/PhysRevB.82.085114 |
||||
9. S. Dusuel, M. Kamfor, R. Orus et al., Phys. Rev. Lett., 106, 107203 (2011). https://doi.org/10.1103/PhysRevLett.106.107203 |
||||
10. E. Fradkin, S.H. Shenker, Phys. Rev. D, 19, 3682 (1979). https://doi.org/10.1103/PhysRevD.19.3682 |
||||
11. J. Knolle, D.L. Kovrizhin, J.T. Chalker et al., Phys. Rev. Lett., 112, 207203 (2014). https://doi.org/10.1103/PhysRevLett.112.207203 |
||||
12. K.S. Tikhonov, M.V. Feigelman, Phys. Rev. Lett., 105, 067207 (2010). https://doi.org/10.1103/PhysRevLett.105.067207 |
||||
13. J. Knolle, D.L. Kovrizhin, J.T. Chalker et al., Phys. Rev. B, 92, 115127 (2015). https://doi.org/10.1103/PhysRevB.92.115127 |
||||
14. V. Lahtinen, New J. Phys., 13, 075009 (2011). https://doi.org/10.1088/1367-2630/13/7/075009 |
||||
15. G. Baskaran, S. Mandal, R. Shankar, Phys. Rev. Lett., 98, 247201 (2007) https://doi.org/10.1103/PhysRevLett.98.247201 |
||||
16. J. Knolle, R. Moessner, Annu. Rev. Condens. Matter Phys.10, 451 (2019). https://doi.org/10.1146/annurev-conmatphys-031218-013401 |
||||
17. T. Senthil, A. Vishwanath, L. Balents et al., Science, 303, 1490 (2004). https://doi.org/10.1126/science.1091806 |
||||
18. A.W. Sandvik, Phys. Rev. Lett., 98, 227202 (2007). https://doi.org/10.1103/PhysRevLett.98.227202 |
||||
19. J. Wang, S. Deng, Z. Liu et al., Natl. Sci. Rev, 2 (1), 22 (2015). | ||||
20. L.Tarruell, D. Greif, T. Uehlinger et al., arXiv:1111.5020v2 cond-mat.quant-gas. 25 Jun 2013, 1-6. | ||||
21. Z. Li, Z. Liu, Z. Liu, Nano Research, 10(6), 2005 (2017). https://doi.org/10.1007/s12274-016-1388-z |
||||
22. G. Montambaux, L.-K. Lim, J.-N. Fuchs et al., Phys. Rev. Lett., 121, 256402 (2018). https://doi.org/10.1103/PhysRevLett.121.256402 |
||||
23. G. Montambaux, F. Piéchon, J.-N. Fuchs et al., arXiv:0907.0500v1 cond-mat.mes-hall. 2 Jul 2009, 1 - 18. | ||||
24. J. Peng, P.J. Chen, Y. Duan et al., AIP Advances, 5, 037132 (2015). https://doi.org/10.1063/1.4916272 |
||||
25. D.V. Efremov, D.I. Khomskii, Phys. Rev. B, 72, 012402. (2005). https://doi.org/10.1103/PhysRevB.72.012402 |
||||
26. F.N. Bukhanko, A.F. Bukhanko, Fiz.Tverd.Tela, 57, 1098 (2015). https://doi.org/10.1134/S1063783415060062 |
||||
27. F.N. Bukhanko, A.F. Bukhanko, Fiz.Tverd.Tela, 61, 2493 (2019). | ||||
28. D.V. Khveshchenko, W.F. Shively, arXiv:cond-mat/0510519v3 cond-mat.str-el. 21 Apr 2006. | ||||
29. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett., 69, 172 (1992). https://doi.org/10.1103/PhysRevLett.69.172 |
||||
30. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett., 77, 3589 (1996). https://doi.org/10.1103/PhysRevLett.77.3589 |
||||
31. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B, 63, 134421 (2001). https://doi.org/10.1103/PhysRevB.63.134421 |
||||
32. F.N. Bukhanko, A.F. Bukhanko, Fiz. Nizk. Temp. 47, 1021 ( 2021). https://doi.org/10.1063/10.0006569 |
||||
33. K. Laubscher, J. Klinovaja, arXiv:2104.14459v2 cond-mat.mes-hall. 13 Aug 2021. | ||||
34. G. Moore, N. Read, Nucl. Phys. B, 360, 362 (1991). https://doi.org/10.1016/0550-3213(91)90407-O |
||||
35. G.E. Volovik, JETP Lett., 70, 609 (1999). https://doi.org/10.1134/1.568223 |
||||
36. N. Read, D. Green, Phys. Rev. B, 61, 10267 (2000). https://doi.org/10.1103/PhysRevB.61.10267 |
||||
37. T. Senthil, M.P.A. Fisher, Phys. Rev. B, 61, 9690 (2000). https://doi.org/10.1103/PhysRevB.61.9690 |
||||
38. D.A. Ivanov, Phys. Rev. Lett., 86, 268 (2001). https://doi.org/10.1103/PhysRevLett.86.268 |
||||
39. G.E. VolovikThe Universe in a Helium Droplet (Oxford University Press, Oxford, 2003). | ||||
40. G.E. Volovik, JETP Lett. 90, 398-401. (2009) https://doi.org/10.1134/S0021364009170172 |
||||
41. A.Y. Kitaev, Ann. Phys., 303, 2 (2009). https://doi.org/10.1016/S0003-4916(02)00018-0 |
||||
42. C. Nayak, S.H. Simon, A. Stern et al., Rev.Mod. Phys., 80, 1083 (2008). https://doi.org/10.1103/RevModPhys.80.1083 |