Funct. Mater. 2025; 32 (2): 190-193.
Resistive investigation of pressure effect on the temperature dependence of the pseudogap in Y0.66Pr0.34Ba2Cu3O7-δsingle crystals accounting for the BCS - BEC crossover
1 V.N. Karazin Kharkiv National University, 61022, Svoboda Sq. 4, Kharkiv, Ukraine
2Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece
3 Department of Materials, Imperial College London, London SW7 2BP, United Kingdom
The effect of high hydrostatic pressure on the electrical conductivity, σ(Т), in the basal ab plane of the high-temperature superconductor (HTSC) Y0.66Pr0.34Ba2Cu3O7-δ single crystals was investigated. It was determined that excess conductivity Δσ(T) of the studied samples in a certain temperature range Tf < T < T* are characterized by a modified exponential temperature dependence Δσ ~ ( 1-T/T*)exp(Δ*ab/T), (T* is the mean field temperature of the superconducting transition), which is interpreted in terms of the BCS-BEC crossover theory. An increase in external pressure leads to a narrowing of the temperature range for the existence of a pseudogap (PG) regime, resulting an expansion of the linear temperature dependence of electrical resistivity in the basal ab plane.
| 1. R.V. Vovk, A.L Solovyov, Low Temp. Phys. 44, 81 (2018) https://doi.org/10.1063/1.5020905 |
||||
| 2. M. Akhavan, B 321, 265 (2002) https://doi.org/10.1016/S0921-4526(02)00860-8 |
||||
| 3. H.A. Borges and M.A. Continentino, Solid State Commun. 80, 197 (1991) https://doi.org/10.1016/0038-1098(91)90180-4 |
||||
| 4. R.V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, I. L. Goulatis, A. Chroneos, E.V. Biletskiy, J. Alloys Compd. 485, 121 (2009) https://doi.org/10.1016/j.jallcom.2009.05.132 |
||||
| 5. A.I. Chroneos, I.L. Goulatis and R.V. Vovk, Acta Chim. Slov. 54, 179 (2007) | ||||
| 6. D.D. Prokofyev, M.P. Volkov, Yu.A. Boikov, Phys. Solid State 45, 1168 (2003) https://doi.org/10.1134/1.1594234 |
||||
| 7. A.L. Solovjov, L.V. Omelchenko, E.V. Petrenko, R.V. Vovk, V.V Khotkevych, and A. Chroneos, Sci Rep 9, 20424 (2019) https://doi.org/10.1038/s41598-019-45286-w |
||||
| 8. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61(1999) https://doi.org/10.1088/0034-4885/62/1/002 |
||||
| 9. E. Babaev, H. Kleinert, Phys. Rev. B. 159, 12083 (1999) https://doi.org/10.1007/978-94-011-4742-2_13 |
||||
| 10. A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, S.N. Kamchatnaya, D.M. Sergeyev, Curr. Appl Phys. 16, 931 (2016) https://doi.org/10.1016/j.cap.2016.05.014 |
||||
| 11. A. L. Solovjov, E. V. Petrenko, L. V. Omelchenko, R.V. Vovk, I. L. Goulatis and A. Chroneos, Sci Rep 9: 9274 (2019). https://doi.org/10.1038/s41598-019-45286-w |
||||
| 12. Yu.V.Litvinov, G.Ya.Khadzhai, A.V.Samoilov et al., Funct. Mater., 26, 3, 462 (2019). https://doi.org/10.15407/fm26.023.462 |
||||
| 13. N.A. Azarenkov, V.N. Voevodin, R.V. Vovk et al., Funct. Mater., 25, 2, 234 (2018). https://doi.org/10.15407/fm25.02.234 |
||||
| 14. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii, R.V.Vovk, T.R.Arouri., Low Temperature Physics 27, N5, 339 (2001). https://doi.org/10.1063/1.1374717 |
||||
| 15. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk, M.A.Obolenskii, and A.A.Prodan, Low Temp. Phys., 23(12), 962 (1997). https://doi.org/10.1063/1.593511 |
||||
| 16. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. Lett. 91, 235302 (2003). | ||||
| 17. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. B 68, 134508 (2003). | ||||
| 18. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. B 69, 144524 (2004). | ||||
| 19. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. B 72, 054506 (2005). | ||||