Funct. Mater. 2025; 32 (2): 242-249.

doi:https://doi.org/10.15407/fm32.02.242

Investigation of the modifying additives influence on the porosity of granular liquid-glass compositions in the process of obtaining ecological thermal insulators

T. Rymar

Volodymyr Dahl East Ukrainian National University, Ukraine, Kyiv, Ioanna Pavla Druhoho, 17, 01042

Abstract: 

Іп this work we study the effect of modifying additives on the porosity of granular liquid-glass compositions under the influence of microwave radiation. It was found that to ensure a high-quality granulation process of liquid-glass compositions, its dynamic viscosity should be 0.5-0.7 Pa·s, which allows forming granules of the correct round shape and maintaining the stability of liquid-glass composition during the granulation process. To preserve the porosity, the transition of the liquid-glass composition to a viscous state must be achieved with maximum preservation of the original structure of the liquid glass. For this purpose, the chemical exchange interaction at the stage of composition formation in the presence of a modifier must be minimal. ZnO meets this requirement, since Zn2+ ions have optimal cation exchange capacity and provide a strong coagulation structure of the composition. ZnO acts as a modifier of coagulation and crystallization processes, helps to slow down gelation; this increases the time to reach an equilibrium state and ensures optimal viscosity of the suspension for its further porization, and also allows preserving the polymer structure of liquid glass, which has a positive effect on the physical and mechanical properties of granulated thermal insulation materials.

Keywords: 
granular thermal insulation materials, liquid-glass compositions, modifiers, porosization, viscosity, gel formation, microwave radiation.
References: 

1. Dvorkin L.I. Budivelni viazhuchi materialy. Rivne, NUVHP, 622 p. (2019) [in Ukraine].

2. Vail J.G. Soluble Sillicates. New York, V 1, 2 (1952).

3. Sobchenko V.V. Rozrobka enerhozberihaiuchoi tekhnolohii vyrobnytstva porystykh zapovniuvachiv iz hidrosylikativ v aparatakh psevdozridzhenoho sharu. Avtoref. dys. Kyiv, 26 p. (2006) [in Ukraine].

4. Pshynko A.N., Savytskyi N.V., Koretskaia S.A., Honcharenko A.A., Visnyk DNUZT. № 4, 200, (2004) [in Russian].

5. Storozhenko D., Dryuchko O., Jesionowski T. International Journal of Engineering & Technology, 7 (3.2), 692, (2018).

6. Tykhomyrova Y.N., Skoryna T.V. XVIII Mendeleevskoho syezda po prykladnoi y obshei khymyy. T. 2, P. 550, (2007)

7. Yvanov M.Iu. Systemy. Metody. Tekhnolohyy, 2 (22), 102, (2014) .

8. Svensson I.L., Sjoberg S., Ohman L. O. J. Chem. Soc, Faraday Trans., 82, 2635, (1986).

9. Ailer R. Khymyia kremnezema. Moskva: Myr. Ch. 1, 416 p., (1982).

10. Ryzhkov Y.V., Tolstoi V.S. Fyzyko-khymycheskye osnovy formyrovanyia svoistv smesei s zhydkym steklom. Kharkov: Yzd-vo Kharkovskoho in-ta, 136 p, (1975).

11. Lebedeva E.Iu., Kazmyna O.V. Materyaly mezhd. nauchno-prakt. konf. «Aktualnye problemy sovremennoho mashynostroenyia». Materyalovedenye, mekhanyka y obrabotka metallov v mashynostroenyy, P. 262 – 265, (2013).

12. Kocherhyna M.P. Strukturoobrazovanye y svoistva stroytelnykh kompozytov na osnove sylykatnatryevykh sviazuiushchykh, modyfytsyrovannykh tsynksoderzhashchymy rastvoramy. Dys. Kand. Tekh. Nauk, Saratov, 213 p., (2017)

13. Pat. US EP 1803693 A1 Unated States, (2007).

14. Pat. CA 2332797 A1 Unated States, (1999).

15. Zhang Z.; Provis J.L.; Reid A.; Wang H. Cem. Concr. Compos., V. 62, Р. 97–105, (2015).

16. Bai C.; Colombo P. Ceram. Int. V. 44, 16103–16118, (2018).

17. Rymar T.E. Zbirnyk naukovykh prats UkrDUZT. Kharkiv,196, 6-16, (2021) [in Ukraine].

18. T.Rymar, O.Suvorin, L.Rodin., Functional materials. 29, 364, (2022).

19. Rymar T.E. Pytannia khimii ta khimichnoi tekhnolohii. Dnipro, DDKhTU, № 2 (123), P. 112-120, (2019).

20. Rymar T. E., Kryuchkova, E.Ju., Pinchukova, N.A., Voloshko, A.Y., Chebanov, V.A., Functional materials. >26, 478, 20.