Funct. Mater. 2025; 32 (2): 259-265.

doi:https://doi.org/10.15407/fm32.02.259

Nanomagnetic technologies in the creation of smart porous materials

M. Riabchykov

Lutsk national technical university, Lvivska str. 75, Lutsk, Ukraine

Abstract: 

The purpose of the work consists in substantiation and creation of porous materials with given parameters of size and structure of cavities. Nanocomposites based on a mixture of divalent and trivalent iron oxides are the basis for such materials. Methods of synthesis of nanocomponents are based on chemical reactions of iron sulfate and iron chloride with the addition of ammonia hydrate. Nanopowder was added to the polyurethane mixture during the formation of the foamed porous structure. The porous material was formed under the conditions of a magnetic field with induction of 5-6 mT. As a result, structures were obtained in which the pore sizes depend on the content of nanocomponents and the induction of a magnetic field. Based on the theory of elasticity, the necessary parameters of the magnetic field are determined to ensure the specified pore sizes. Application of a magnetic field with an induction of -6 to +6 mT to the finished material leads to the occurrence of hysteresis effects, resulting in final values of 1-1.5 mT. The obtained results demonstrate the possibility of adjusting the porosity parameters of the material during creation and operation.

Keywords: 
porous materials, magnetic technologies, nanocomponents, smart materials
References: 

1. L.Abylgazina, I.Senkovska, S.Kaskel, Communications Materials, 5, 132 (2024).

2. S.Hua, M.O. Okello, J.Zhang, Scientific Reports, 14, 14277 (2024).

3. Z.Shiyun, X.Jun, X.Junxian, Z.Zhaohui, D.Qijun, C.Kefu, Separation and Purification Technology, 349, 127672, (2024).

4. H.Sung-Ho, E.Kyung Jang, Materials, 16, 3737 (2023).

5. O.Mikulich, In: V.Tonkonogyi, V.Ivanov, J.Trojanowska, G.Oborskyi, I. Pavlenko (eds) Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering, Springer, Cham. (2023).

6. M.Riabchykov, L.Nazarchuk, O.Tkachuk, Tekstilec, 65(4), 268-277 (2022).

7. F.Fan, Z.Zhihui, L.Jiwei, H.Yuesheng, C.Weichao, Progress in Materials Science, 146, 101328 (2024).

8. P.Amruth, P.Akshay, M.Rosemol Jacob, J.M.Joy, S.Mathew, International Journal of Biological Macromolecules. 276, Part 1, 133668 (2024).

9. M.Sharifi, S.H.Bahrami, J. Biological Macromolecules,, 277, Part 2, 133666 (2024).

10. M.C.B.Cardinali, J.H.Miranda, T.B.Moraes, Soil and Tillage Research, 244, 106258 (2024).

11. N.Sohrabi, H.Almasi, M.Moradi, Food Hydrocolloids, 156, 110261 (2024).

12. J.Wang, W.Lin, Z.Chen, et al., Nature Communications, 15, 1575 (2024).

13. O.Povstyanoy, N.Imbirovych, V.Posuvailo, O.Zabolotnyi, T.Artyukh, In: V.Tonkonogyi, V.Ivanov, J.Trojanowska, G.Oborskyi, I.Pavlenko, Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering, Springer, Cham. (2023).

14. O.Povstyanoy, N.Imbirovich, R.Redko, O.Redko, P.Savaryn, In: V.Tonkonogyi, V.Ivanov, J.Trojanowska, G.Oborskyi, I.Pavlenko,. Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering, Springer, Cham. (2024).

15. A.Vijeata, G.R.Chaudhary, S.Chaudhary, A.A.Ibrahim, Chemosphere, 357, 141935 (2024).

16. P.P.Savchuk, V.P.Kashytskyi, M.D.Melnychuk, O.L.Sadova, S.V.Myskovets, Funct. Mater., 26 (3): 621-628. (2019).

17. V.I.Shvabyuk, O.A. Mikulich, Journal of Mathematical Sciences, 253, 148 (2021).

18. A.Zeleňáková, V.Zeleňák, E.Beňová. et al., Scientific Reports, 14, 14427 (2024).

19. W.Gu, Y.Jiang, Materials Today Sustainability, 27, 100793 (2024).

20. M.Riabchykov, I.Tsykhanovska, A.Alexandrov, J. Materials Science, 58(16), 7244(2023).

21. Y.Yu, X.Bu, J.Qi, Z.Zhang, J.Geng, Applied Clay Science, 258, 107479 (2024).

22. W.Han, J.S.Lee, D.Lee, J.Kim, Case Studies in Construction Materials, 21, e03544 (2024).

23. Y.G.Chabak, V.I.Zurnadzhy, M.A.Golinskyi, I.Petryshynets, S.P.Shymchuk, Progress in Physics of Metals, 23(4), 583 (2022).

24. B.Beitzinger, P.Walther, M.Lindén, Microporous and Mesoporous Materials, 378, 113247 (2024).

25. M.He, Y.Chen, G.Chen, W.Li, M.Zhang, C.Zhang, H.Zhang, X.Long, K.Tang, T.Duan, L.Zhu, Environmental Pollution, 357, 124442 (2024).

26. M.Riabchykov, V.Vlasenko, S.Arabuli, Vlakna a Textil, 18(2), 24 (2011)

27. A.Sumithra, R.Sivaraj, V.R.Prasad, ... S.Kuharat, B.R.Kumar. International Journal of Modern Physics, B, 38(29), 2450398, (2024).

28. T.Yuan, L.Shen, D.Dini, Acta Biomaterialia, 173, 123-134 (2024).

29. A.Yadav, H.Kumar, R.Sharma, R.Kumari, Surfaces and Interfaces, 39, 102925 (2023).

30. M.Riabchykov, O.Tkachuk, L.Nazarchuk, A.Alexandrov, Materials Research Express, 10(1),015401 (2023).

31. Y.Liu, J.Chen, W.Xu, J.Yan, Engineering Geology, 340, 107666 (2024).

32. H.Tang, N.V.Nguyen, H.Nguyen-Xuan, J.Lee, International Jou).

33. A.T.Mohamed, R.A.Hameed, S.H.EL-Moslamy, et al., Scientific Reports, 14, 6081 (2024).

34. M.Riabchykov, T.Furs, A.Alexandrov, I.Tsykhanovska, O.Hulai, V.Shemet, J. Engineering Sciences , 10(2), 56-62 (2023).

35. M.Rugiel, N.Janik-Olchawa, J.Kowalczyk, K.Pomorska, M.Sitarz, E.Bik, D.Horak, M.Babic, Z.Setkowicz, J.Chwiej, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 323, 124888 (2024).

36. I.Y. Magda, M.S. Sayed, Journal of Molecular Liquids, 407, 125284 (2024).

37. M.Riabchykov, A.Alexandrov, I.Tsykhanovska, S.Nechipor, A.Nikulina, S.Vilkov, Vlákna a textile, 26(4), 47-52 (2019).

38. T.N.Ghosh, A.K.Bhunia, S.S.Pradhan, et al,. 35, Journal of Materials Science: Materials in Electronics, 1124 (2024).

39. M.Al-Gharram, P.Uhlmann, M.Al-Hussein, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 684, 133212, (2024).

40. U.A.Campos, D.E.Hall, Thin-Walled Structures, 138, 199-207. (2019).

41. L. Moreno-Sanabria, T. Uhlířová, W. Pabst, M. Koller, H. Seiner, M.I. Osendi, M. Belmonte, P. Miranzo, Journal of the European Ceramic Society, 44, Issue 15, 116771, (2024).

42. X.Zhang, Q.Sun, X.Liang, et al., Nature Communications, 15, 392 (2024).