Funct. Mater. 2025; 32 (2): 266-271.
Peculiarities of influence of anionic modification on formation of Na+, Mg2+, Zn2+-containing calcium phosphates
1 Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
2Enamine Ltd, 78 Winston Churchill Str., 02094, Kyiv, Ukraine
The paper presents a study of the effect of adding carbonate or borate anions to the initial solution of the Ca2+-Mg2+-Zn2+-Na+-PO43- system on the formation of calcium phosphates containing Na+, Mg2+, Zn2+. In the Сa2+-Mg2+-Zn2+-Na+-PO43- system, the biphasic calcium phosphates (mixture of phases based on Са10(РО4)6(ОН)2 and β-Са3(РО4)2) have been obtained. It was established that an increase in the amount of Zn2+ in the initial solution leads to an increase in the content of phase β-Са3(РО4)2 from 25wt% to 75wt% in biphasic calcium phosphates and its particles size from 35 to 71 nm. In vitro tests of the modified calcium phosphates with different anionic composition in model solution at 37°C showed the highest activity: an increase in pH more than 35% after first 48 hours and for 14 days of the study for calcium carbonate apatite phosphate containing Na+(0,5wt%), Mg2+ (0.5wt%) and Zn2+(1.7wt%). At the same time, borate-containing phosphate with a similar content of trace elements showed activity only during first 48 hours with a pH change of 20%. Obtained results showed the possibility of obtaining apatite-related modified calcium phosphate with different dissolution rates by changing the nature of anionic dopant when designing materials for orthopedics.
1. Y. Gou, K. Qi, Y. Wei et al., Nano TransMed, 3, 100033 (2024).
2. R. Drevet, J. Fauré, H. Benhayoune, Coatings,
3. S. Panda, C.K. Biswas, S. Paul, Ceramics International, 47, 20, 28122 (2021).
4. C.I. Codrea, D. Lincu, I. Atkinson et at., Materials,
5. J. Jeong, J.H. Kim, J.H. Shim et al., Biomater Res., 23, 4 (2019).
6. T. Lu, Y. Miao, X. Yuan, et al., Ceramics International, 49, 10, 15588 (2023).
7. S.-M. Huang, S.-M. Liu, W.-C. et al., Pharmaceuticals,
8. O. Mishchenko, A. Yanovska, O. Kosinov, et al., Polymers,
9. M. Furko, C. Balázsi, Morphological, Materials,
10. S. Sutha, G. Karunakaran, V. Rajendran, Ceramics International, 39, 5, 5205 (2013).
11. T. Liu, M. Jin, Y. Zhang, et al., Ceramics International, 47, 21, 30929 (2021).
12. S. Tabassum, Handbook of Ionic Substituted Hydroxyapatites, 117-148 (2020).
13. K. Midorikawa, S. Hiromoto, T. Yamamoto, Ceramics International, 50, 4, 6784 (2024).
14. K. Hayashi, C. Zhang, A.N.T. Alashkar et al., Appl Mater Interfaces, 16, 35, 45956 (2024).
15. O. Gokcekaya, C. Ergun, T.J. Webster, et al., Ceramics International, 49, 5, 7506 (2023).
16. A.E. Pazarçeviren, A. Tezcaner, D. Keskin, et al., Biol Trace Elem Res, 199, 968 (2021).
17. N. Strutynska, I. Zatovsky, N. Slobodyanik, et al., Eur. J. Inorg. Chem. 2015, 622 (2015).
18. C.C. Kee, H. Ismail, M.N. Ahmad-Fauzi, J. Mater. Sci. Technol. 29 (8), 761 (2013).