Funct. Mater. 2025; 32 (2): 306-314.
Evaluation of selectivity and sensitivity of gallium nitride nanosensor for grabbing metal/metalloid ions (Na+, K+, Sn2+, Pb2+, Al3+) from water: materials modelling approach towards environmental treatment
Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
The goal of this research is selecting metal/metalloid ions of (Na+, K+, Sn2+, Pb2+, Al3+) from water due to nanomaterial-based gallium nitride nanocage (Ga–N). Ga–N was modeled in the presence of metal/metalloid cations (Na+, K+, Sn2+, Pb2+, Al3+). Moreover, the results of chemical shielding calculations exhibited remarkable fluctuations in the metal elements Na+, K+, Sn2+, Pb2+, Al3+ due to the capture of Ga–N in the periodic framework of H2O molecules. This research work confirms the selectivity of metal ion capture by Ga–N nanodetector as: K+> Na+>>> Sn2+ ≈ Pb2+ > Al3+. Finally, it has been shown that for a given number of N-donor sites in the Ga–N nanosensor, the stabilities of monovalent (M+), divalent (M2+) and trivalent (M3+) cation complexes are K+↔ Ga–N > Na+↔ Ga–N >>> Sn2+↔ Ga–N ≈ Pb2+↔ Ga–N > Al3+↔ Ga–N.
1. L. Lajoie, A.-S. Fabiano-Tixier, F. Chemat, Pharmaceuticals, 15, 1507 (2022). https://doi.org/10.3390/ph15121507
2. M. Wang; Z. Wang, J. Zhang, J. Zhan, C. Wu, W. Yu, W. Fan, J. Tang, Q. Zhang, J. Zhang, ACS Sustain. Chem. Eng., 10, 10369 (2022). https://doi.org/10.1021/acssuschemeng.2c03138.
3. C. Micheau, A. Schneider, L. Girard, P. Bauduin, Colloid Surf. A, 470, 52 (2015).
4. R. Ghosh, A. Sahu, S. Pushpavanam, J. Hazard. Mater., 367, 589 (2019).
5. K. Matsuoka, H. Miura, S. Karima, C. Taketaka, S. Ouno, Y. Moroi, J. Mol. Liq., 263, 89 (2018).
6. G. Lindblom, B. Lindman, G.J.T. Tiddy, J. Am. Chem. Soc. 100, 2299 (1978).
7. I.D. Leigh, M.P. McDonald, R.M. Wood, G.J.T. Tiddy, M.H. Trevethan, J. Chem. Soc. Faraday Trans.1 , 77, 2867(1981).
8. N. Schwierz, D. Horinek, R.R. Netz, Langmuir, 26, 7370 (2010).
9. M.H. Ropers, G. Czichocki, G. Brezesinski, J. Phys. Chem. B, 107, 5281 (2003).
10. L. Lajoie, A.-S. Fabiano-Tixier, F. Chemat, Pharmaceuticals, 15, 1507 (2022). https://doi.org/10.3390/ph15121507
11. E. Sadatshojaei, D.A. Wood, Water, the Most Accessible Eco-Friendly Solvent, and Extraction and Separation Agent. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 283–292. https://doi.org/10.1016/B978-0–12-821884-6.00012-7.
12. Y. Cheng, F. Xue, S. Yu, S. Du, Y. Yang, Molecules, 26, 4004 (2021). https://doi.org/10.3390/molecules26134004
13. M. Wang, Z. Wang, J. Zhang, J. Zhan, C. Wu, W. Yu, W. Fan, J. Tang, Q. Zhang, J. Zhang, ACS Sustain. Chem. Eng., 10, 10369 (2022). https://doi.org/10.1021/acssuschemeng.2c03138.
14. Akira Hiratsuka, Yoshiro Yasuda, Journal of Water Resource and Protection. 13(1), 44-73, (2021). https://doi.org/10.4236/jwarp.2021.131004.
15. D. A. Gidlow, "Lead toxicity," Occupational Medicine, 65, no. 5, 348 (2015).
16. T. Vincent, P. Krys, C. Jouannin, A.-C. Gaumont, I. Dez, and E. Guibal, Journal of Oanometallic Chemistry, 723, 90 (2013).
17. J. Czulak, C. Jouannin, T. Vincent, I. Dez, A.-C. Gaumont, and E. Guibal, Separation Science and Technology, 47, no. 14–15, 2166 (2012).
18. R. Singh, N. Gautam, A. Mishra, R. Gupta, Indian Journal of Pharmacology, 43, no. 3, 246 (2011).
19. S. Zhang, H. Gao, J. Li et al., Journal of Hazardous Materials, 321, 92 (2017).
20. Richa Jain. Recent advances of magnetite nanomaterials to remove arsenic from water. RSC Adv. 2022 12(50): 32197–32209. https://doi.org/10.1039/d2ra05832d.
21. P. Rybarczyk, B. Kawalec-Pietrenko Processes.; 9(2), 301 (2021). https://doi.org/10.3390/pr9020301.
22. B. Rathinam, V. Murugesan, B.-T. Liu, Chemosensors, 10, 69 (2022). https://doi.org/10.3390/chemosensors10020069.
23. R.S. Roy, A.Mondal, & P.K. Nandi, J Mol Model, 23, 93 (2017). https://doi.org/10.1007/s00894-017-3273-4
24. R. Dennington, T. A. Keith, J.M. Millam, GaussView, Version 6.06.16, Semichem Inc., Shawnee Mission, KS, 2016.
25. G Henkelman, A Arnaldsson, and H Jónsson, Computational Materials Science, 36(3), 354 (2006).
26. P.E. Blöchl, Phys. Rev. B., 50, 17953 (1994).
27. P. Hohenberg, W. Kohn, Phys. Rev. B, 136, B864-B871 (1964).
28. Kohn, W., Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 1965, 140, A1133- A1138.
29. C. Lee, W. Yang, R.G. Parr, Phys Rev B, 37, 785 (1988).
30. Takeshi Yanai, David P. Tew, Nicholas C. Handy, Chemical Physics Letters. 393(1–3), 51, (2004). https://doi.org/10.1016/j.cplett.2004.06.011
31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb,; et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
32. J. A. S. Smith, Journal of Chemical Education. 48, 39, (1971).
33. K Appendix: Nuclear quadrupole resonance, by Allen N. Garroway, Naval Research Laboratory. In Jacqueline MacDonald, J. R. Lockwood: Alternatives for Landmine Detection. Report MR–1608, Rand Corporation, 2003.
34. O. Kh. Poleshchuck, E.L. Kalinna, J. N. Latosinska, J. Koput, Journal of Molecular Structure (Theochem) 547 (2001) 233 – 243.
35. A. Young, Hugh, Roger D. Freedman, Sears and Zemansky′s University Physics with Modern Physics (13th ed.). Boston: Addison-Wesley. p. 754 (2012).