Funct. Mater. 2025; 32 (3): 323-347.
Fluorescence properties of cyanine dyes molecular aggregates in nanostructured media: A review
Institute for Scintillation Materials, NAS of Ukraine, 60 Nauky ave., 61072 Kharkiv, Ukraine
J-aggregates, highly ordered molecular assemblies, continue to attract significant attention in hybrid nanophotonic research owing to their strong absorption, efficient energy transfer, and pronounced fluorescence properties. When combined with nanostructured materials, their spectral properties – such as quantum yield, lifetime, and exciton dynamics – can be substantially modified. This review discusses various aspects of J-aggregates′ interactions with different nanostructured materials, focusing on their impact on the aggregates′ optical properties, particularly fluorescence. Strategies for enhancing the spectral response of J-aggregates in both liquid and solid media are highlighted.
1. P.N. Prasad, Nanophotonics, John Wiley & Sons, Inc, Hoboken, 2004. https://doi.org/10.1002/0471670251.
2. L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2006. https://doi.org/10.1017/CBO9780511813535.
3. J. Singh, R.T. Williams, eds., Excitonic and Photonic Processes in Materials, Springer Singapore, Singapore, 2015. https://doi.org/10.1007/978-981-287-131-2.
4. S. Datta, X. Marie, Excitons and excitonic materials, MRS Bull 49 (2024) 852–861. https://doi.org/10.1557/s43577-024-00766-x.
5. T. Kobayashi, ed., J-Aggregates, World Scientific, Singapore, 1996. https://doi.org/10.1142/3168.
6. T. Kobayashi, ed., J-Aggregates, Volume 2, World Scientific, Singapore, 2012. https://doi.org/10.1142/8226.
7. F. Würthner, T.E. Kaiser, C.R. Saha-Möller, J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials, Angewandte Chemie International Edition 50 (2011) 3376–3410. https://doi.org/10.1002/anie.201002307.
8. J.L. Bricks, Y.L. Slominskii, I.D. Panas, A.P. Demchenko, Fluorescent J-aggregates of cyanine dyes: basic research and applications review, Methods Appl Fluoresc 6 (2017) 012001. https://doi.org/10.1088/2050-6120/aa8d0d.
9. A. V. Sorokin, S.L. Yefimova, Y. V. Malyukin, Polymer-Bound Supramolecular J-Aggregates: Optical Properties and Applications, in: Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2018: pp. 1–33. https://doi.org/10.1002/0471440264.pst664.
10. T.L.C. Jansen, L.M. Günther, J. Knoester, J. Köhler, Electronically excited states in cylindrical molecular aggregates: Exciton delocalization, dynamics, and optical response, Chemical Physics Reviews 5 (2024) 041305. https://doi.org/10.1063/5.0225327.
11. J. Knoester, V.M. Agranovich, Frenkel and Charge-Transfer Excitons in Organic Solids, in: V.M. Agranovich, G.F. Bassani (Eds.), Thin Films and Nanostructures: Electronic Excitations in Organic Based Nanostructures, Volume 31, 2003: pp. 1–96. https://doi.org/10.1016/S1079-4050(03)31001-4.
12. Y.V. Malyukin, A.V. Sorokin, V.P. Semynozhenko, Features of exciton dynamics in molecular nanoclusters (J-aggregates): Exciton self-trapping (Review Article), Low Temperature Physics 42 (2016) 429–440. https://doi.org/10.1063/1.4955493.
13. A.P. Demchenko, ed., Advanced Fluorescence Reporters in Chemistry and Biology II, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-04701-5.
14. S. Xu, H.-W. Liu, S.-Y. Huan, L. Yuan, X.-B. Zhang, Recent progress in utilizing near-infrared J-aggregates for imaging and cancer therapy, Mater Chem Front 5 (2021) 1076–1089. https://doi.org/10.1039/D0QM00557F.
15. Z. Li, P.-Z. Liang, L. Xu, X.-X. Zhang, K. Li, Q. Wu, X.-F. Lou, T.-B. Ren, L. Yuan, X.-B. Zhang, In situ orderly self-assembly strategy affording NIR-II-J-aggregates for in vivo imaging and surgical navigation, Nat Commun 14 (2023) 1843. https://doi.org/10.1038/s41467-023-37586-7.
16. A. Liess, A. Arjona-Esteban, A. Kudzus, J. Albert, A. Krause, A. Lv, M. Stolte, K. Meerholz, F. Würthner, Ultranarrow Bandwidth Organic Photodiodes by Exchange Narrowing in Merocyanine H- and J-Aggregate Excitonic Systems, Adv Funct Mater 29 (2019) 1805058. https://doi.org/10.1002/adfm.201805058.
17. S.B. Anantharaman, K. Strassel, M. Diethelm, A. Gubicza, E. Hack, R. Hany, F.A. Nüesch, J. Heier, Exploiting supramolecular assemblies for filterless ultra-narrowband organic photodetectors with inkjet fabrication capability, J Mater Chem C Mater 7 (2019) 14639–14650. https://doi.org/10.1039/C9TC04773E.
18. Q. Zhao, H. Lai, H. Chen, H. Li, F. He, H- and J-aggregation inspiring efficient solar conversion, J Mater Chem A Mater 9 (2021) 1119–1126. https://doi.org/10.1039/D0TA11146E.
19. J.H. Kim, T. Schembri, D. Bialas, M. Stolte, F. Würthner, Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors, Advanced Materials 34 (2022). https://doi.org/10.1002/adma.202104678.
20. E.E. Jelley, Spectral Absorption and Fluorescence of Dyes in the Molecular State, Nature 138 (1936) 1009–1010. https://doi.org/10.1038/1381009a0.
21. E.E. Jelley, Molecular, Nematic and Crystal States of I:I′-Diethyl-ψ-Cyanine Chloride, Nature 139 (1937) 631–632. https://doi.org/10.1038/139631b0.
22. G. Scheibe, L. Kandler, H. Ecker, Polymerisation und polymere Adsorption als Ursache neuartiger Absorptionsbanden von organischen Farbstoffen, Naturwissenschaften 25 (1937) 75–75. https://doi.org/10.1007/BF01493278.
23. G. Scheibe, Reversible Polymerisation als Ursache neuartiger Absorptionsbanden von Farbstoffen, Kolloid-Zeitschrift 82 (1938) 1–14. https://doi.org/10.1007/BF01509409.
24. G. Scheibe, Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache, Angewandte Chemie 50 (1937) 212–219. https://doi.org/10.1002/ange.19370501103.
25. J. Franck, E. Teller, Migration and Photochemical Action of Excitation Energy in Crystals, J Chem Phys 6 (1938) 861–872. https://doi.org/10.1063/1.1750182.
26. U. Giovanella, G. Leone, G. Ricci, T. Virgili, I.S. Lopez, S.K. Rajendran, C. Botta, Oxazine-1 J-aggregates in polymer nanohybrids, Physical Chemistry Chemical Physics 14 (2012) 13646. https://doi.org/10.1039/c2cp42361h.
27. S. Matsumoto, T. Kobayashi, T. Aoyama, T. Wada, J-Aggregates in vapor deposited films of a bisazomethine dye, Chemical Communications (2003) 1910. https://doi.org/10.1039/b304028c.
28. S. Kim, M. Fujitsuka, N. Tohnai, T. Tachikawa, I. Hisaki, M. Miyata, T. Majima, The unprecedented J-aggregate formation of rhodamine moieties induced by 9-phenylanthracenyl substitution, Chem. Commun. 51 (2015) 11580–11583. https://doi.org/10.1039/C5CC03969J.
29. F.C. Spano, C. Silva, H- and J-Aggregate Behavior in Polymeric Semiconductors, Annu Rev Phys Chem 65 (2014) 477–500. https://doi.org/10.1146/annurev-physchem-040513-103639.
30. Y. Sun, H. Jiu, D. Zhang, J. Gao, B. Guo, Q. Zhang, Preparation and optical properties of Eu(III) complexes J-aggregate formed on the surface of silver nanoparticles, Chem Phys Lett 410 (2005) 204–208. https://doi.org/10.1016/j.cplett.2005.05.064.
31. M. Hecht, F. Würthner, Supramolecularly Engineered J-Aggregates Based on Perylene Bisimide Dyes, Acc Chem Res 54 (2021) 642–653. https://doi.org/10.1021/acs.accounts.0c00590.
32. H. Piwoński, S. Nozue, H. Fujita, T. Michinobu, S. Habuchi, Organic J-Aggregate Nanodots with Enhanced Light Absorption and Near-Unity Fluorescence Quantum Yield, Nano Lett 21 (2021) 2840–2847. https://doi.org/10.1021/acs.nanolett.0c04928.
33. M. Kasha, Molecular Excitons in Small Aggregates, Spectroscopy of the Excited State (1976) 337–363. https://doi.org/10.1007/978-1-4684-2793-6_12.
34. M. Kasha, H.R. Rawls, M. Ashraf El-Bayoumi, The exciton model in molecular spectroscopy, Pure Appl. Chem. 11 (1965) 371–392. https://doi.org/10.1351/pac196511030371.
35. A.P. Deshmukh, N. Geue, N.C. Bradbury, T.L. Atallah, C. Chuang, M. Pengshung, J. Cao, E.M. Sletten, D. Neuhauser, J.R. Caram, Bridging the gap between H- and J-aggregates: Classification and supramolecular tunability for excitonic band structures in two-dimensional molecular aggregates, Chemical Physics Reviews 3 (2022) 021401. https://doi.org/10.1063/5.0094451.
36. N.J. Hestand, F.C. Spano, Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials, Acc Chem Res 50 (2017) 341–350. https://doi.org/10.1021/acs.accounts.6b00576.
37. N.J. Hestand, F.C. Spano, Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer, Chem Rev 118 (2018) 7069–7163. https://doi.org/10.1021/acs.chemrev.7b00581.
38. S. Ma, S. Du, G. Pan, S. Dai, B. Xu, W. Tian, Organic molecular aggregates: From aggregation structure to emission property, Aggregate 2 (2021). https://doi.org/10.1002/agt2.96.
39. H. von Berlepsch, C. Böttcher, L. Dähne, Structure of J-aggregates of pseudoisocyanine dye in aqueous solution, J. Phys. Chem. B 104 (2000) 8792–8799. https://doi.org/10.1021/jp000085q.
40. D.A. Higgins, P.F. Barbara, Excitonic transitions in J-aggregates probed by near-field scanning optical microscopy, J Phys Chem 99 (1995) 3–7. https://doi.org/10.1021/j100001a002.
41. H. v. Berlepsch, C. Böttcher, Supramolecular Structure of TTBC J-Aggregates in Solution and on Surface, Langmuir 29 (2013) 4948–4958. https://doi.org/10.1021/la400417d.
42. Yu.V. Malyukin, A.V. Sorokin, S.L. Yefimova, A.N. Lebedenko, Photo-induced reorganization of molecular packing of amphi-PIC J-aggregates (single J-aggregate spectroscopy), J Lumin 112 (2005) 429–433. https://doi.org/10.1016/j.jlumin.2004.09.082.
43. T.E. Kaiser, V. Stepanenko, F. Würthner, Fluorescent J-Aggregates of Core-Substituted Perylene Bisimides: Studies on Structure-Property Relationship, Nucleation-Elongation Mechanism, and Sergeants-and-Soldiers Principle, J Am Chem Soc 131 (2009) 6719–6732. https://doi.org/10.1021/ja900684h.
44. F. Würthner, C.R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials, Chem Rev 116 (2016) 962–1052. https://doi.org/10.1021/acs.chemrev.5b00188.
45. K. Herman, H. Kirmse, A. Eljarrat, C.T. Koch, S. Kirstein, J.P. Rabe, Individual tubular J-aggregates stabilized and stiffened by silica encapsulation, Colloid Polym Sci 298 (2020) 937–950. https://doi.org/10.1007/s00396-020-04661-0.
46. C. Shen, D. Bialas, M. Hecht, V. Stepanenko, K. Sugiyasu, F. Würthner, Polymorphism in Squaraine Dye Aggregates by Self-Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus J-Aggregate Nanosheets, Angewandte Chemie International Edition 60 (2021) 11949–11958. https://doi.org/10.1002/anie.202102183.
47. Z. Chen, Y. Liu, W. Wagner, V. Stepanenko, X. Ren, S. Ogi, F. Würthner, Near-IR Absorbing J-Aggregate of an Amphiphilic BF 2 -Azadipyrromethene Dye by Kinetic Cooperative Self-Assembly, Angewandte Chemie International Edition 56 (2017) 5729–5733. https://doi.org/10.1002/anie.201701788.
48. S. Kirstein, S. Daehne, J-aggregates of amphiphilic cyanine dyes: Self-organization of artificial light harvesting complexes, International Journal of Photoenergy 2006 (2006) 1–21. https://doi.org/10.1155/IJP/2006/20363.
49. E. Lang, A. Sorokin, M. Drechsler, Y. V. Malyukin, J. Köhler, Optical Spectroscopy on Individual amphi-PIC J-Aggregates, Nano Lett 5 (2005) 2635–2640. https://doi.org/10.1021/nl051132z.
50. A.P. Deshmukh, A.D. Bailey, L.S. Forte, X. Shen, N. Geue, E.M. Sletten, J.R. Caram, Thermodynamic Control over Molecular Aggregate Assembly Enables Tunable Excitonic Properties across the Visible and Near-Infrared, J Phys Chem Lett 11 (2020) 8026–8033. https://doi.org/10.1021/acs.jpclett.0c02204.
51. S. Rhodes, W. Liang, X. Wang, N.R. Reddy, J. Fang, Transition from H-Aggregate Nanotubes to J-Aggregate Nanoribbons, The Journal of Physical Chemistry C 124 (2020) 11722–11729. https://doi.org/10.1021/acs.jpcc.0c02908.
52. A. V. Sorokin, I.Yu. Ropakova, R.S. Grynyov, M.M. Vilkisky, V.M. Liakh, I.A. Borovoy, S.L. Yefimova, Y. V. Malyukin, Strong difference between optical properties and morphologies for J-Aggregates of similar cyanine dyes, Dyes and Pigments 152 (2018) 49–53. https://doi.org/10.1016/j.dyepig.2018.01.032.
53. P.M. Ajayan, Nanotubes from Carbon, Chem Rev 99 (1999) 1787–1800. https://doi.org/10.1021/cr970102g.
54. H. Yao, K. Domoto, T. Isohashi, K. Kimura, In Situ Detection of Birefringent Mesoscopic H and J Aggregates of Thiacarbocyanine Dye in Solution, Langmuir 21 (2005) 1067–1073. https://doi.org/10.1021/la0479004.
55. H. Yao, T. Isohashi, K. Kimura, Electrolyte-induced mesoscopic aggregation of thiacarbocyanine dye in aqueous solution: Counterion size specificity, Journal of Physical Chemistry B 111 (2007) 7176–7183. https://doi.org/10.1021/jp070520h.
56. A.V. Sorokin, N.V. Pereverzev, I.I. Grankina, S.L. Yefimova, Y.V. Malyukin, Evidence of Exciton Self-Trapping in Pseudoisocyanine J-Aggregates Formed in Layered Polymer Films, Journal of Physical Chemistry C 119 (2015) 27865–27873. https://doi.org/10.1021/acs.jpcc.5b09940.
57. A. V. Sorokin, I.Yu. Ropakova, S. Wolter, R. Lange, I. Barke, S. Speller, S.L. Yefimova, Y. V. Malyukin, S. Lochbrunner, Exciton Dynamics and Self-Trapping of Carbocyanine J-Aggregates in Polymer Films, The Journal of Physical Chemistry C 123 (2019) 9428–9444. https://doi.org/10.1021/acs.jpcc.8b09338.
58. T.H. James, The theory of the photographic process., New York: Macmillan, 1977.
59. F.C. Spano, S. Mukamel, Nonlinear susceptibilities of molecular aggregates: Enhancement of <0x03C7>3 by size, Phys Rev A 40 (1989) 5783–5801. https://doi.org/10.1103/PhysRevA.40.5783.
60. F.C. Spano, S. Mukamel, Superradiance in molecular aggregates, J Chem Phys 91 (1989) 683–700. https://doi.org/10.1063/1.457174.
61. E.W. Knapp, P.O.J. Scherer, S.F. Fischer, On the lineshapes of vibronically resolved molecular aggregate spectra. application to pseudoisocyanin (PIC), Chem Phys Lett 111 (1984) 481–486. https://doi.org/10.1016/0009-2614(84)85544-X.
62. P.O.J. Scherer, S.F. Fischer, On the theory of vibronic structure of linear aggregates. Application to pseudoisocyanin (PIC), Chem Phys 86 (1984) 269–283. https://doi.org/10.1016/0301-0104(84)80015-4.
63. V. Sundström, T. Gillbro, R.A. Gadonas, A. Piskarskas, Annihilation of singlet excitons in J aggregates of pseudoisocyanine (PIC) studied by pico- and subpicosecond spectroscopy, J Chem Phys 89 (1988) 2754–2762. https://doi.org/10.1063/1.455027.
64. S. De Boer, D.A. Wiersma, Dephasing-induced damping of superradiant emission in J-aggregates, Chem Phys Lett 165 (1990) 45–53. https://doi.org/10.1016/0009-2614(90)87010-O.
65. H. Fidder, J. Knoester, D.A. Wiersma, Optical properties of disordered molecular aggregates: A numerical study, J Chem Phys 95 (1991) 7880–7890. https://doi.org/10.1063/1.461317.
66. H. Fidder, J. Terpstra, D.A. Wiersma, Dynamics of Frenkel excitons in disordered molecular aggregates, J Chem Phys 94 (1991) 6895–6907. https://doi.org/10.1063/1.460220.
67. A.V. Sorokin, I.I. Filimonova, R.S. Grynyov, G.Y. Guralchuk, S.L. Yefimova, Y.V. Malyukin, Control of exciton migration efficiency in disordered J-aggregates, Journal of Physical Chemistry C 114 (2010) 1299–1305. https://doi.org/10.1021/jp906665j.
68. K.A. Clark, E.L. Krueger, D.A. Vanden Bout, Direct Measurement of Energy Migration in Supramolecular, Journal of Physical Chemistry Letters 5 (2014) 2274–2282. https://doi.org/10.1021/jz500634f.
69. A. Merdasa, Á.J. Jiménez, R. Camacho, M. Meyer, F. Würthner, I.G. Scheblykin, Single Lévy States–Disorder Induced Energy Funnels in Molecular Aggregates, Nano Lett 14 (2014) 6774–6781. https://doi.org/10.1021/nl5021188.
70. J.R. Caram, S. Doria, D.M. Eisele, F.S. Freyria, T.S. Sinclair, P. Rebentrost, S. Lloyd, M.G. Bawendi, Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate, Nano Lett 16 (2016) 6808–6815. https://doi.org/10.1021/acs.nanolett.6b02529.
71. T. Brixner, R. Hildner, J. Köhler, C. Lambert, F. Würthner, Exciton Transport in Molecular Aggregates - From Natural Antennas to Synthetic Chromophore Systems, Adv Energy Mater 7 (2017) 1700236. https://doi.org/10.1002/aenm.201700236.
72. D. Embriaco, D.B. Balagurov, G.C. La Rocca, V.M. Agranovich, Topical questions in the photophysics of J aggregates, Physica Status Solidi C: Conferences 1 (2004) 1429–1438. https://doi.org/10.1002/pssc.200304081.
73. S.L. Yefimova, A. V. Sorokin, I.K. Katrunov, Yu. V. Malyukin, Excitation localization effects in nanoscale molecular clusters (J-aggregates), Low Temperature Physics 37 (2011) 157–162. https://doi.org/10.1063/1.3556666.
74. A. Eisfeld, S.M. Vlaming, V.A. Malyshev, J. Knoester, Excitons in Molecular Aggregates with Lévy-Type Disorder: Anomalous Localization and Exchange Broadening of Optical Spectra, Phys Rev Lett 105 (2010) 137402. https://doi.org/10.1103/PhysRevLett.105.137402.
75. Jai. Singh, Excitation Energy Transfer Processes in Condensed Matter, Springer US, Boston, MA, 1994. https://doi.org/10.1007/978-1-4899-0996-1.
76. K.S. Song, R.T. Williams, Self-Trapped Excitons, 2
77. Y. Toyozawa, Optical Processes in Solids, Cambridge University Press, Cambridge, 2003. https://doi.org/10.1017/CBO9780511615085.
78. A.H. Herz, Aggregation of sensitizing dyes in solution and their adsorption onto silver halides, Adv Colloid Interface Sci 8 (1977) 237–298. https://doi.org/10.1016/0001-8686(77)80011-0.
79. D. Takahashi, H. Oda, T. Izumi, R. Hirohashi, Substituent effects on aggregation phenomena in aqueous solution of thiacarbocyanine dyes, Dyes and Pigments 66 (2005) 1–6. https://doi.org/10.1016/j.dyepig.2004.08.008.
80. J. Xiang, X. Yang, C. Chen, Y. Tang, W. Yan, G. Xu, Effects of NaCl on the J-aggregation of two thiacarbocyanine dyes in aqueous solutions, J Colloid Interface Sci 258 (2003) 198–205. https://doi.org/10.1016/S0021-9797(02)00187-X.
81. I.A. Struganova, H. Lim, S.A. Morgan, The influence of inorganic salts and bases on the formation of the J-band in the absorption and fluorescence spectra of the diluted aqueous solutions of TDBC, Journal of Physical Chemistry B 106 (2002) 11047–11050. https://doi.org/10.1021/jp013511w.
82. S.R. Clowes, D.M. R<0x0103>s<0x0103>dean, T.-M. Gianga, T. Jávorfi, R. Hussain, G. Siligardi, G.D. Panto<0x015F>, Mueller Matrix Polarimetry on Cyanine Dye J-Aggregates, Molecules 28 (2023) 1523. https://doi.org/10.3390/molecules28041523.
83. C. Sun, S. Zhou, P. Chen, Effects of different H
84. Y. Egawa, R. Hayashida, J. Anzai, pH-Induced Interconversion between J-Aggregates and H-Aggregates of 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin in Polyelectrolyte Multilayer Films, Langmuir 23 (2007) 13146–13150. https://doi.org/10.1021/la701957b.
85. L. Ding, J. Yang, M. Dai, S. Li, K. Yin, J. Li, Effect of environmental factors on the aggregation behavior of astaxanthin in water, Spectrochim Acta A Mol Biomol Spectrosc 280 (2022) 121506. https://doi.org/10.1016/j.saa.2022.121506.
86. H. von Berlepsch, C. Böttcher, L. Dähne, Structure of J-aggregates of pseudoisocyanine dye in aqueous solution, J. Phys. Chem. B 104 (2000) 8792–8799. https://doi.org/10.1021/jp000085q.
87. H. von Berlepsch, C. Böttcher, Network Superstructure of Pseudoisocyanine J -Aggregates in Aqueous Sodium Chloride Solution Revealed by Cryo-Transmission Electron Microscopy, J Phys Chem B 106 (2002) 3146–3150. https://doi.org/10.1021/jp0143701.
88. A.N. Lebedenko, G.Ya. Guralchuk, A.V. Sorokin, S.L. Yeflmova, Y.V. Malyukin, Pseudoisocyanine J-aggregate to optical waveguiding crystallite transition: Microscopic and microspectroscopic exploration, Journal of Physical Chemistry B 110 (2006) 17772–17775. https://doi.org/10.1021/jp061965t.
89. A.V. Sorokin, I.Yu. Ropakova, S.L. Yefimova, Yu.V. Malyukin, Influence of pseudoisocyanine J-aggregate agglomeration on the optical properties, Functional Materials 25 (2018) 088–092. https://doi.org/10.15407/fm25.01.088.
90. H. von Berlepsch, C. Böttcher, A. Ouart, C. Burger, S. Daehne, S. Kirstein, S. Dähne, S. Kirstein, Supramolecular structures of J-aggregates of carbocyanine dyes in solution, J Phys Chem B 104 (2000) 5255–5262. https://doi.org/10.1021/jp000220z.
91. A. V. Sorokin, I.Yu. Ropakova, R.S. Grynyov, M.M. Vilkisky, V.M. Liakh, I.A. Borovoy, S.L. Yefimova, Y. V. Malyukin, Strong difference between optical properties and morphologies for J-Aggregates of similar cyanine dyes, Dyes and Pigments 152 (2018) 49–53. https://doi.org/10.1016/j.dyepig.2018.01.032.
92. G.Ya. Guralchuk, A. V. Sorokin, I.K. Katrunov, S.L. Yefimova, A.N. Lebedenko, Yu. V. Malyukin, S.M. Yarmoluk, Specificity of Cyanine Dye L-21 Aggregation in Solutions with Nucleic Acids, J Fluoresc 17 (2007) 370–376. https://doi.org/10.1007/s10895-007-0201-5.
93. M.Yu. Losytskyy, V.M. Yashchuk, Fluorescent J-Aggregates and Their Biological Applications, in: A.P. Demchenko (Ed.), Advanced Fluorescence Reporters in Chemistry and Biology II: Molecular Constructions, Polymers and Nanoparticles, Springer-Verlag Berlin Heidelberg, 2010: pp. 135–157. https://doi.org/10.1007/978-3-642-04701-5_4.
94. M.Y. Losytskyy, V.M. Yashchuk, S.S. Lukashov, S.M. Yarmoluk, Davydov Splitting in Spectra of Cyanine Dye J-Aggregates, Formed on the Polynucleotides, J Fluoresc 12 (2002) 109–112. https://doi.org/10.1023/A:1015379723901.
95. J.O. Smith, D.A. Olson, B.A. Armitage, Molecular Recognition of PNA-Containing Hybrids: Spontaneous Assembly of Helical Cyanine Dye Aggregates on PNA Templates, J Am Chem Soc 121 (1999) 2686–2695. https://doi.org/10.1021/ja9837553.
96. M. Wang, G.L. Silva, B.A. Armitage, DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate, J Am Chem Soc 122 (2000) 9977–9986. https://doi.org/10.1021/ja002184n.
97. R.A. Garoff, E.A. Litzinger, R.E. Connor, I. Fishman, B.A. Armitage, Helical Aggregation of Cyanine Dyes on DNA Templates: Effect of Dye Structure on Formation of Homo- and Heteroaggregates, Langmuir 18 (2002) 6330–6337. https://doi.org/10.1021/la025742f.
98. B.A. Armitage, Cyanine Dye–DNA Interactions: Intercalation, Groove Binding, and Aggregation, in: Top Curr Chem, 2005: pp. 55–76. https://doi.org/10.1007/b100442.
99. T.Y. Ogul′chansky, M.Y. Losytskyy, V.B. Kovalska, S.S. Lukashov, V.M. Yashchuk, S.M. Yarmoluk, Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves, Spectrochim Acta A Mol Biomol Spectrosc 57 (2001) 2705–2715. https://doi.org/10.1016/S1386-1425(01)00537-6.
100. A.S.R. Koti, N. Periasamy, Self-assembly of template-directed J-aggregates of porphyrin, Chemistry of Materials 15 (2003) 369–371. https://doi.org/10.1021/cm025664h.
101. O.K. Kim, J. Melinger, S.J. Chung, M. Pepitone, Supramolecular device for artificial photosynthetic mimics as helix-mediated antenna/reaction center ensemble, Org Lett 10 (2008) 1625–1628. https://doi.org/10.1021/ol800320f.
102. Z. Dai, L. Dähne, E. Donath, H. Möhwald, Mimicking photosynthetic two-step energy transfer in cyanine triads assembled into capsules, Langmuir 18 (2002) 4553–4555. https://doi.org/10.1021/la0255222.
103. S.L. Yefimova, G. V. Grygorova, V.K. Klochkov, I.A. Borovoy, A. V. Sorokin, Y. V. Malyukin, Molecular Arrangement in Cyanine Dye J-Aggregates Formed on CeO 2 Nanoparticles, The Journal of Physical Chemistry C 122 (2018) 20996–21003. https://doi.org/10.1021/acs.jpcc.8b06590.
104. O.P. Dimitriev, I.A. Mazarchuk, V.Y. Morozovska, L.I. Trischuk, Antenna size effect: The influence on energy transfer in the CdTe-pseudoisocyanine nanocomposite system, Chem Phys Lett 554 (2012) 168–171. https://doi.org/10.1016/j.cplett.2012.10.044.
105. V.Yu. Petrenko, Yu.L. Slominskii, G.L. Smirnova, I.A. Mazarchuk, O.P. Dimitriev, Influence of CdTe Nanoparticles on the Formation of J-Aggregates of Thiamonomethinecyanine Dyes, Ukrainian Journal of Physics 58 (2013) 480–489. https://doi.org/10.15407/ujpe58.05.0480.
106. F.S. Freyria, J.M. Cordero, J.R. Caram, S. Doria, A. Dodin, Y. Chen, A.P. Willard, M.G. Bawendi, Near-Infrared Quantum Dot Emission Enhanced by Stabilized Self-Assembled J-Aggregate Antennas, Nano Lett 17 (2017) 7665–7674. https://doi.org/10.1021/acs.nanolett.7b03735.
107. J.E. Halpert, J.R. Tischler, G. Nair, B.J. Walker, W. Liu, V. Bulovi<0x0107>, M.G. Bawendi, Electrostatic formation of quantum dot/J-aggregate FRET pairs in solution, Journal of Physical Chemistry C 113 (2009) 9986–9992. https://doi.org/10.1021/jp8099169.
108. Y. Qiao, F. Polzer, H. Kirmse, E. Steeg, S. Kühn, S. Friede, S. Kirstein, J.P. Rabe, Nanotubular J-Aggregates and Quantum Dots Coupled for Efficient Resonance Excitation Energy Transfer, ACS Nano 9 (2015) 1552–1560. https://doi.org/10.1021/nn506095g.
109. R.V. Pereira, M.H. Gehlen, Fluorescence of acridinic dyes in anionic surfactant solution, Spectrochim Acta A Mol Biomol Spectrosc 61 (2005) 2926–2932. https://doi.org/10.1016/j.saa.2004.11.009.
110. S. Kirstein, S. Daehne, J-aggregates of amphiphilic cyanine dyes: Self-organization of artificial light harvesting complexes, International Journal of Photoenergy 2006 (2006) 1–21. https://doi.org/10.1155/IJP/2006/20363.
111. N.O. Mchedlov-Petrossyan, S.A. Shapovalov, V.L. Koval, T.A. Shakhverdov, Y.A. Bochkaryov, The surfactant-induced formation of J- and H-aggregates in aqueous pseudoisocyanine solutions, Dyes and Pigments 19 (1992) 33–40. https://doi.org/10.1016/0143-7208(92)87009-P.
112. U. De Rossi, S. Daehne, M. Lindrum, Increased Coupling Size in J-Aggregates through N-n-Alkyl Betaine Surfactants, Langmuir 12 (1996) 1159–1165.
113. Yu.V. Malyukin, S.L. Efimova, K. Kemnitz, Spectroscopy of intermolecular interaction in the system: Dye–sodium dodecylsulphate micelles, J Lumin 94–95 (2001) 239–242. https://doi.org/10.1016/S0022-2313(01)00286-1.
114. P.W. Bohn, Aspects of structure and energy transport in artificial molecular assemblies, Annu Rev Phys Chem 44 (1993) 37–60. https://doi.org/10.1146/annurev.pc.44.100193.000345
115. A.K. Chibisov, V.I. Prokhorenko, H. Görner, Effects of surfactants on the aggregation behaviour of thiacarbocyanine dyes, Chem Phys 250 (1999) 47–60. https://doi.org/10.1016/S0301-0104(99)00245-1.
116. N.C. Maiti, S. Mazumdar, N. Periasamy, J- and H-Aggregates of Porphyrins with Surfactants: Fluorescence, Stopped Flow and Electron Microscopy Studies, Journal of Porphyrins and Phthalocyanines (JPP) 02 (1998) 369–376. https://doi.org/10.1002/(SICI)1099-1409(199807/10)2:4/5≤369::AID-JPP92\>3.0.CO;2-3.
117. A.K. Chibisov, G. V. Zakharova, H. Görner, Photoprocesses of thiamonomethinecyanine monomers and dimers, Physical Chemistry Chemical Physics 3 (2001) 44–49. https://doi.org/10.1039/b005683i.
118. X. Li, Y. Xie, Z. Chen, G. Zou, The interaction of 2-hydroquinone-5,10,15,20-tetra(p-hydroxyphenyl)porphyrin with surfactants: solubilization and J-aggregates, Spectrochim Acta A Mol Biomol Spectrosc 61 (2005) 2468–2473. https://doi.org/10.1016/j.saa.2004.09.011.
119. H. von Berlepsch, S. Kirstein, R. Hania, A. Pug<0x017E>lys, C. Böttcher, Modification of the Nanoscale Structure of the J-Aggregate of a Sulfonate-Substituted Amphiphilic Carbocyanine Dye through Incorporation of Surface-Active Additives, J Phys Chem B 111 (2007) 1701–1711. https://doi.org/10.1021/jp065826n.
120. X. Li, Z. Zheng, M. Han, Z. Chen, G. Zou, Tuning J-Aggregates of Tetra( p -hydroxyphenyl)porphyrin by the Headgroups of Ionic Surfactants in Acidic Nonionic Micellar Solution, J Phys Chem B 111 (2007) 4342–4348. https://doi.org/10.1021/jp067148a.
121. X. Li, D. Li, W. Zeng, G. Zou, Z. Chen, Exciton Coupling of Tetra( p -hydroxyphenyl)porphyrin Controlled by Substituents of Counterions in Triton X-100 Micellar Solution, J Phys Chem B 111 (2007) 1502–1506. https://doi.org/10.1021/jp0669815.
122. G.Ya. Guralchuk, I.K. Katrunov, R.S. Grynyov, A.V. Sorokin, S.L. Yefimova, Yu.V. Malyukin, S.M. Yarmoluk, Strong enhancement of cyanine dye aggregation by a cationic surfactant, Functional Materials 14 (2007) 228–232.
123. G.Ya. Guralchuk, I.K. Katrunov, R.S. Grynyov, A. V. Sorokin, S.L. Yefimova, I.A. Borovoy, Y. V. Malyukin, Anomalous Surfactant-Induced Enhancement of Luminescence Quantum Yield of Cyanine Dye J-Aggregates, The Journal of Physical Chemistry C 112 (2008) 14762–14768. https://doi.org/10.1021/jp802933n.
124. S. Yefimova, A. Lebed, A. Sorokin, G. Guralchuk, I. Borovoy, Y. Malyukin, J-type aggregation of squaraine dye Sq-2Me in surfactant solutions, J Mol Liq 165 (2012) 113–118. https://doi.org/10.1016/j.molliq.2011.10.016.
125. Yu.V. Malyukin, B.A. Gnap, A.V. Sorokin, S.L. Yefimova, Control of electron–lattice interaction in organic nanoclusters, Opt Mater (Amst) 34 (2012) 2008–2011. https://doi.org/10.1016/j.optmat.2012.01.029.
126. I.K. Katrunov, S.L. Yefimova, A.V. Sorokin, Y.V. Malyukin, Control of polaron formation in J-aggregates, Functional Materials 17 (2010) 52–58.
127. I.K. Katrunov, A. V. Sorokin, S.L. Yefimova, Yu. V. Malyukin, Manifestation of Exciton-Lattice Interaction in J-Aggregates, Molecular Crystals and Liquid Crystals 535 (2011) 57–63. https://doi.org/10.1080/15421406.2011.537904.
128. R. Atta-Fynn, P. Biswas, D.A. Drabold, Electron–phonon coupling is large for localized states, Phys Rev B 69 (2004) 245204. https://doi.org/10.1103/PhysRevB.69.245204.
129. I.I. Grankina, I.A. Borovoy, S.I. Petrushenko, S.S. Hrankina, V.P. Semynozhenko, S.L. Yefimova, A. V. Sorokin, Fluorescent properties of amphi-PIC J-aggregates in the complexes with bovine serum albumin, J Mol Liq 368 (2022) 120755. https://doi.org/10.1016/j.molliq.2022.120755.
130. S. Xu, H.-W. Liu, S.-Y. Huan, L. Yuan, X.-B. Zhang, Recent progress in utilizing near-infrared J-aggregates for imaging and cancer therapy, Mater Chem Front 5 (2021) 1076–1089. https://doi.org/10.1039/D0QM00557F.
131. P.R. Patlolla, N. Desai, S. Gupta, B. Datta, Interaction of a dimeric carbocyanine dye aggregate with bovine serum albumin in non-aggregated and aggregated forms, Spectrochim Acta A Mol Biomol Spectrosc 209 (2019) 256–263. https://doi.org/10.1016/j.saa.2018.10.048.
132. Y. Zhang, H. Du, Y. Tang, G. Xu, W. Yan, Spectroscopic investigation on the interaction of J-aggregate with human serum albumin, Biophys Chem 128 (2007) 197–203. https://doi.org/10.1016/j.bpc.2007.04.002.
133. A. Sorokin, V. Prokopiuk, I. Grankina, I. Borovoy, A. Tkachenko, S. Yefimova, Amphi-PIC J-Aggregate - Protein Complexes: Stability in Blood and Toxicity to Cell Cultures, in: 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), IEEE, 2022: pp. 1–5. https://doi.org/10.1109/NAP55339.2022.9934581.
134. P.J. Meadows, E. Dujardin, S.R. Hall, S. Mann, Template-directed synthesis of silica-coated J-aggregate nanotapes, Chemical Communications (2005) 3688. https://doi.org/10.1039/b502436f.
135. K.L. Gurunatha, E. Dujardin, Tuning the Optical Coupling between Molecular Dyes and Metal Nanoparticles by the Templated Silica Mineralization of J-Aggregates, The Journal of Physical Chemistry C 117 (2013) 3489–3496. https://doi.org/10.1021/jp311911f.
136. Y. Qiao, F. Polzer, H. Kirmse, S. Kirstein, J.P. Rabe, Nanohybrids from nanotubular J-aggregates and transparent silica nanoshells, Chemical Communications 51 (2015) 11980–11982. https://doi.org/10.1039/C5CC00901D.
137. C.M. Walters, C. Pao, B.P. Gagnon, C.R. Zamecnik, G.C. Walker, Bright Surface-Enhanced Raman Scattering with Fluorescence Quenching from Silica Encapsulated J-Aggregate Coated Gold Nanoparticles, Advanced Materials 30 (2017) 1705381. https://doi.org/10.1002/adma.201705381.
138. K. Ng, M. Webster, W.P. Carbery, N. Visaveliya, P. Gaikwad, S.J. Jang, I. Kretzschmar, D.M. Eisele, Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding, Nat Chem 12 (2020) 1157–1164. https://doi.org/10.1038/s41557-020-00563-4.
139. D.H. Thanippuli Arachchi, U. Barotov, C.F. Perkinson, T. <0x0160>verko, A.E.K. Kaplan, M.G. Bawendi, Bright and Fast Emission from Robust Supramolecular J-Aggregate Nanostructures through Silica-Encapsulation, ACS Nano 18 (2024) 20422–20434. https://doi.org/10.1021/acsnano.4c04732.
140. U. De Rossi, S. Daehne, R. Reisfeld, Photophysical properties of cyanine dyes in sol-gel matrices, Chem Phys Lett 251 (1996) 259–267. https://doi.org/10.1016/0009-2614(96)00117-0.
141. F. Nüesch, J.E. Moser, V. Shklover, M. Grätzel, Merocyanine aggregation in mesoporous networks, J Am Chem Soc 118 (1996) 5420–5431. https://doi.org/10.1021/ja953042+.
142. T. Watanabe, H.S. Zhou, I. Honma, K. Asai, K. Ishigure, Synthesis and nonlinear optical susceptibility of cyanine dye J-aggregate doped silica film (I), J Solgel Sci Technol 19 (2000) 257–261. https://doi.org/10.1023/A:1008752708964.
143. H.S. Zhou, T. Watanabe, A. Mito, K. Asai, K. Ishigure, I. Honma, Synthesis and Nonlinear Optical Susceptibility of Cyanine Dye J-Aggregates Doped Silica Film (II), J Solgel Sci Technol 19 (2000) 803–806. https://doi.org/10.1023/A:1008720402488.
144. N. Kato, K. Yamamoto, Y. Uesu, Aqueous dispersions of J-aggregates and J-aggregate-doped silica bulk gels, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 46 (2007) 5318–5320. https://doi.org/10.1143/JJAP.46.5318.
145. J. Bujdák, N. Iyi, J. Hrobáriková, T. Fujita, Aggregation and Decomposition of a Pseudoisocyanine Dye in Dispersions of Layered Silicates, J. Colloid Interface Sci. 247 (2002) 494–503. https://doi.org/10.1006/jcis.2001.8140.
146. J. Bujdák, N. Iyi, Spectral properties and structure of the J-aggregates of pseudoisocyanine dye in layered silicate films, J Colloid Interface Sci 326 (2008) 426–432. https://doi.org/10.1016/j.jcis.2008.06.036.
147. J. Bujdák, Layer-by-Layer Assemblies Composed of Polycationic Electrolyte, Organic Dyes, and Layered Silicates, The Journal of Physical Chemistry C 118 (2014) 7152–7162. https://doi.org/10.1021/jp411155x.
148. H.S. Zhou, T. Watanabe, A. Mito, I. Honma, K. Asai, K. Ishigure, M. Furuki, High nonlinear optical coefficient (x3 = 10-7 esu) of cyanine dye J aggregates doped silica film synthesized by a simple sol-gel method, Mater Sci Eng B Solid State Mater Adv Technol 95 (2002) 180–186. https://doi.org/10.1016/S0921-5107(02)00232-5.
149. A.V. Sorokin, A.V. Voloshko, I.I. Fylymonova, I.I. Bespalova, S.L. Yefimova, Features of J-aggregates formation in pores of nanostructured anodic aluminum oxide, Functional Materials 21 (2014) 42–46.
150. I.Yu. Ropakova, P.V. Pisklova, I.I. Bespalova, I.A. Borovoy, O.G. Viagin, P.V. Mateychenko, S.L. Yefimova, A.V. Sorokin, Optical spectroscopy of cyanine dyes J-aggregates in porous TiO2 matrices, Functional Materials 29 (2022) 494–501. https://doi.org/10.15407/fm29.04.494.
151. P. Pisklova, I. Ropakova, I. Bespalova, S. Kryvonogov, O. Viagin, S. Yefimova, A. Sorokin, Features of cyanine dyes aggregation on differently charged TiO2 matrices, Chemical Physics Impact 6 (2023) 100176. https://doi.org/10.1016/j.chphi.2023.100176.
152. Q. Liu, J. Zhu, T. Sun, H. Zhou, Q. Shao, G. Li, X. Liu, Y. Yin, Porphyrin nanotubes composed of highly ordered molecular arrays prepared by anodic aluminum template method, RSC Adv 3 (2013) 2765. https://doi.org/10.1039/c2ra21364h.
153. W. Xu, H. Guo, D.L. Akins, Aggregation and exciton emission of a cyanine dye encapsulated within mesoporous MCM-41, Journal of Physical Chemistry B 105 (2001) 7686–7689. https://doi.org/10.1021/jp004154c.
154. M. Busby, C. Blum, M. Tibben, S. Fibikar, G. Calzaferri, V. Subramaniam, L. De Cola, Time, space, and spectrally resolved studies on J-aggregate interactions in zeolite L nanochannels, J Am Chem Soc 130 (2008) 10970–10976. https://doi.org/10.1021/ja801178p.
155. N. Alarcos, J.A. Organero, F. Sánchez, A. Douhal, Exploring the Photobehavior of Nanocaged Monomers and H- and J-Aggregates of a Proton-Transfer Dye within NaX and NaY Zeolites, The Journal of Physical Chemistry C 118 (2014) 8217–8226. https://doi.org/10.1021/jp412544y.
156. E. Gaufrès, N.Y.-W. Tang, F. Lapointe, J. Cabana, M.-A. Nadon, N. Cottenye, F. Raymond, T. Szkopek, R. Martel, Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging, Nat Photonics 8 (2014) 72–78. https://doi.org/10.1038/nphoton.2013.309.
157. R. Sola-Llano, Y. Fujita, L. Gómez-Hortigüela, A. Alfayate, H. Uji-i, E. Fron, S. Toyouchi, J. Pérez-Pariente, I. López-Arbeloa, V. Martínez-Martínez, One-Directional Antenna Systems: Energy Transfer from Monomers to J-Aggregates within 1D Nanoporous Aluminophosphates, ACS Photonics 5 (2018) 151–157. https://doi.org/10.1021/acsphotonics.7b00553.
158. N. Sikdar, D. Dutta, R. Haldar, T. Ray, A. Hazra, A.J. Bhattacharyya, T.K. Maji, Coordination-Driven Fluorescent J-Aggregates in a Perylenetetracarboxylate-Based MOF: Permanent Porosity and Proton Conductivity, The Journal of Physical Chemistry C 120 (2016) 13622–13629. https://doi.org/10.1021/acs.jpcc.6b04347.
159. M. Rödl, V. Kiefer, S. Olthof, K. Meerholz, G. Jung, H.A. Schwartz, Confinement-Driven Aggregate Formation of Photoacids within Porous Metal–Organic Frameworks, ACS Omega 10 (2025) 4711–4721. https://doi.org/10.1021/acsomega.4c09621.
160. M.S.A. Abdel-Mottaleb, M.M.S. Abdel-Mottaleb, H.S. Hafez, M. Saif, J-Aggregates of Amphiphilic Cyanine Dyes for Dye-Sensitized Solar Cells: A Combination between Computational Chemistry and Experimental Device Physics, International Journal of Photoenergy 2014 (2014) 1–6. https://doi.org/10.1155/2014/579476.
161. R. Hany, B. Fan, F.A. de Castro, J. Heier, W. Kylberg, F. Nüesch, Strategies to improve cyanine dye multi layer organic solar cells, Progress in Photovoltaics: Research and Applications 19 (2011) 851–857. https://doi.org/10.1002/pip.1049.
162. D. Saccone, S. Galliano, N. Barbero, P. Quagliotto, G. Viscardi, C. Barolo, Polymethine Dyes in Hybrid Photovoltaics: Structure-Properties Relationships, European J Org Chem 2016 (2016) 2244–2259. https://doi.org/10.1002/ejoc.201501598.
163. K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO 2 Film, J Phys Chem B 106 (2002) 1363–1371. https://doi.org/10.1021/jp0129380.
164. G. Chen, H. Sasabe, W. Lu, X.-F. Wang, J. Kido, Z. Hong, Y. Yang, J-aggregation of a squaraine dye and its application in organic photovoltaic cells, J Mater Chem C Mater 1 (2013) 6547. https://doi.org/10.1039/c3tc31243g.
165. P.K.D. Duleepa Pitigala, M.M. Henary, E.A. Owens, A.G. UnilPerera, K. Tennakone, Excitonic photovoltaic effect in a cyanine dye molecular assembly electronically coupled to n- and p-type semiconductors, J Photochem Photobiol A Chem 325 (2016) 39–44. https://doi.org/10.1016/j.jphotochem.2015.11.018.
166. J. Xiang, C. Chen, Z. Chen, W. Yan, X. Ai, Y. Liu, G. Xu, Photoinduced electron transfer from the excited J-aggregate state of a thiacarbocyanine dye to TiO2 colloids, J Colloid Interface Sci 254 (2002) 195–199. https://doi.org/http://dx.doi.org/10.1006/jcis.2002.8566.
167. A. Liess, A. Arjona-Esteban, A. Kudzus, J. Albert, A. Krause, A. Lv, M. Stolte, K. Meerholz, F. Würthner, Ultranarrow Bandwidth Organic Photodiodes by Exchange Narrowing in Merocyanine H- and J-Aggregate Excitonic Systems, Adv Funct Mater 29 (2019) 1805058. https://doi.org/10.1002/adfm.201805058.
168. S.B. Anantharaman, K. Strassel, M. Diethelm, A. Gubicza, E. Hack, R. Hany, F.A. Nüesch, J. Heier, Exploiting supramolecular assemblies for filterless ultra-narrowband organic photodetectors with inkjet fabrication capability, J Mater Chem C Mater 7 (2019) 14639–14650. https://doi.org/10.1039/C9TC04773E.
169. S.T. Bailey, G.E. Lokey, M.S. Hanes, J.D.M. Shearer, J.B. McLafferty, G.T. Beaumont, T.T. Baseler, J.M. Layhue, D.R. Broussard, Y.-Z. Zhang, B.P. Wittmershaus, Optimized excitation energy transfer in a three-dye luminescent solar concentrator, Solar Energy Materials and Solar Cells 91 (2007) 67–75. https://doi.org/10.1016/j.solmat.2006.07.011.
170. Yu.P. Piryatinskii, V.G. Nazarenko, O. V. Yatsun, Controllable electrochromic effect in a liquid-crystal cell with J aggregates, Technical Physics Letters 25 (1999) 761–762. https://doi.org/10.1134/1.1262626.
171. A. Adamow, L. Sznitko, E. Chrzumnicka, J. Stachera, A. Szukalski, T. Martynski, J. Mysliwiec, The ultra-photostable and electrically modulated Stimulated Emission in perylene-based dye doped liquid crystal, Sci Rep 9 (2019) 2143. https://doi.org/10.1038/s41598-019-38484-z.
172. A. Biadasz, K. Rytel, K. Kędzierski, A. Adamski, M. Kotkowiak, A. Stachowiak, B. Barszcz, H.Y. Jeong, T.-D. Kim, The liquid crystal induced J-type aggregation of diketopyrrolopyrrole derivatives in monolayer, J Mol Liq 285 (2019) 598–606. https://doi.org/10.1016/j.molliq.2019.04.093.
173. I.I. Grankina, O.M. Samoilov, N.A. Kasian, I.Yu. Ropakova, S.S. Hrankina, S.L. Yefimova, L.N. Lisetski, O. V. Sorokin, Spectral features of the dispersion of carbocyanine dye J-aggregates in a liquid crystal matrix, Opt Mater Express 13 (2023) 1741. https://doi.org/10.1364/OME.491678.
174. O. Sorokin, I. Grankina, O. Samoilov, N. Kasian, S. Hrankina, L. Lisetski, S. Yefimova, Influence of Dispersion in Liquid Crystal on Optical Properties of Cyanine Dye J-Aggregates, in: 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP), IEEE, 2023: pp. NP01-1-NP01-4. https://doi.org/10.1109/NAP59739.2023.10310901.
175. Y. Wang, J. Shi, J. Chen, W. Zhu, E. Baranoff, Recent progress in luminescent liquid crystal materials: design, properties and application for linearly polarised emission, J Mater Chem C Mater 3 (2015) 7993–8005. https://doi.org/10.1039/C5TC01565K.
176. H. Coles, S. Morris, Liquid-crystal lasers, Nat Photonics 4 (2010) 676–685. https://doi.org/10.1038/nphoton.2010.184.
177. J. Mysliwiec, A. Szukalska, A. Szukalski, L. Sznitko, Liquid crystal lasers: the last decade and the future, Nanophotonics 10 (2021) 2309–2346. https://doi.org/10.1515/nanoph-2021-0096.
178. J. Voskuhl, M. Giese, Mesogens with aggregation-induced emission properties: Materials with a bright future, Aggregate 3 (2022). https://doi.org/10.1002/agt2.124.
179. W.J. Harrison, D.L. Mateer, G.J.T. Tiddy, Liquid-Crystalline J-Aggregates Formed by Aqueous Ionic Cyanine Dyes, J Phys Chem 100 (1996) 2310–2321. https://doi.org/10.1021/jp952532l.
180. S. Herbst, B. Soberats, P. Leowanawat, M. Lehmann, F. Würthner, A Columnar Liquid-Crystal Phase Formed by Hydrogen-Bonded Perylene Bisimide J-Aggregates, Angewandte Chemie International Edition 56 (2017) 2162–2165. https://doi.org/10.1002/anie.201612047.
181. S. Herbst, B. Soberats, P. Leowanawat, M. Stolte, M. Lehmann, F. Würthner, Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases, Nat Commun 9 (2018) 2646. https://doi.org/10.1038/s41467-018-05018-6.
182. T. Ma, Z. Wang, C. Song, N. Song, J. Ren, B. Liu, H. Zhang, H. Zhang, D. Lu, J-Aggregate Behavior of Poly(9,9- dioctyluorenyl-2,7-diyl)- alt -co-(bithiophene). (F8T2) in Crystal and Liquid Crystal Phases, The Journal of Physical Chemistry C 123 (2019) 24321–24327. https://doi.org/10.1021/acs.jpcc.9b07311.
183. Y. Ma, A. Dicce, N.R. Reddy, J. Fang, Liquid-crystalline ordering of davydov-split aggregates of cyanine dyes, Colloids Surf A Physicochem Eng Asp 642 (2022) 128713. https://doi.org/10.1016/j.colsurfa.2022.128713.
184. A.P. Demchenko, Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection, Methods Appl Fluoresc 8 (2020) 022001. https://doi.org/10.1088/2050-6120/ab7365.
185. A. Nabok, Organic and inorganic nanostructures, Artech House, Boston, 2005. http://us.artechhouse.com/Organic-and-Inorganic-Nanostructures-P866.aspx (accessed March 9, 2018).
186. D. Möbius, Scheibe Aggregates, Advanced Materials 7 (1995) 437–444. https://doi.org/10.1002/adma.19950070503.
187. T.L. Penner, D. Möbius, Photoinduced Electron-Transfer Processes in Monolayer Assemblies. Supersensitization in a Three-Component System, J Am Chem Soc 104 (1982) 7407–7413. https://doi.org/10.1021/ja00390a004.
188. D. Möbius, H. Kuhn, Energy transfer in monolayers with cyanine dye Sheibe aggregates, J Appl Phys 64 (1988) 5138–5141. https://doi.org/10.1063/1.342421.
189. J.A. Tuszyński, M.F. Jørgensen, D. Möbius, Mechanisms of exciton energy transfer in Scheibe aggregates, Phys Rev E 59 (1999) 4374–4383. https://doi.org/10.1103/PhysRevE.59.4374.
190. L. Wolthaus, A. Schaper, D. Möbius, Brickstone arrangement in J-aggregates on an amphiphilic merocyanine dye, Chem Phys Lett 225 (1994) 322–326. https://doi.org/10.1016/0009-2614(94)87088-8.
191. Y. Yonezawa, H. Kurokawa, T. Sato, Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies, J Lumin 54 (1993) 285–295. https://doi.org/10.1016/0022-2313(93)90087-4.
192. A. Yamaguchi, N. Kometani, Y. Yonezawa, Spectroscopic properties of the mixed J-aggregate of unsymmetric merocyanine dyes in wide temperature range, Thin Solid Films 513 (2006) 125–135. https://doi.org/10.1016/j.tsf.2006.01.059.
193. H. Ishizawa, T. Sato, M.I. Sluch, A.G. Vitukhnovsky, Y. Yonezawa, Preparation and fluorescence properties of mixed J-aggregates of quinocyanine dyes, Thin Solid Films 284–285 (1996) 134–137. https://doi.org/10.1016/S0040-6090(95)08289-1.
194. A. Yamaguchi, N. Kotnetani, Y. Yonezawa, Luminescence properties of the mixed J-aggregate of oxacyanine dye and thiacyanine dye. Formation of a persistence-type aggregate, Journal of Physical Chemistry B 109 (2005) 1408–1414. https://doi.org/10.1021/jp0405557.
195. Y. Yonezawa, A. Yamaguchi, N. Kometani, Spectroscopic properties of persistence-type dye aggregate in wide temperature range, Colloids Surf A Physicochem Eng Asp 284–285 (2006) 223–228. https://doi.org/10.1016/j.colsurfa.2006.01.004.
196. M.I. Sluch, A.G. Vitukhnovsky, Y. Yonezawa, H. Ishizawa, T. Sato, Anomalous behavior of the J-aggregate of quinocyanine dyes in the mixed Langmuir-Blodgett films, Phys Scr 56 (1997) 125–128. https://doi.org/10.1088/0031-8949/56/1/017.
197. Y. Yonezawa, A. Yamaguchi, N. Kometani, Exciton delocalization of the J-aggregate of oxacyanine dye and thiacyanine dye in LB films, Phys Status Solidi B Basic Res 242 (2005) 803–806. https://doi.org/10.1002/pssb.200460002.
198. D. Noukakis, M. Van der Auweraer, F.C. De Schryver, Mechanism of Photosensitized Charge Injection from Organic Dyes Incorporated in Langmuir-Blodgett Films into SnO2, J Phys Chem 98 (1994) 11745–11750. https://doi.org/10.1021/j100096a019.
199. Á. Gil, I. Arístegui, A. Suárez, I. Sández, D. Möbius, Effect of additives on J-aggregate formation of a merocyanine and energy transfer in monolayers at the air-water interface, Langmuir 18 (2002) 8527–8534. https://doi.org/10.1021/la026095v.
200. S. Chakraborty, P. Debnath, D. Dey, D. Bhattacharjee, S.A. Hussain, Formation of fluorescent H-aggregates of a cyanine dye in ultrathin film and its effect on energy transfer, J Photochem Photobiol A Chem 293 (2014) 57–64. https://doi.org/10.1016/j.jphotochem.2014.07.018.
201. P. Debnath, S. Chakraborty, S. Deb, J. Nath, D. Bhattacharjee, S.A. Hussain, Reversible Transition between Excimer and J-Aggregate of Indocarbocyanine Dye in Langmuir-Blodgett (LB) Films, Journal of Physical Chemistry C 119 (2015) 9429–9441. https://doi.org/10.1021/acs.jpcc.5b02111.
202. P. Debnath, S. Chakraborty, S. Deb, J. Nath, B. Dey, D. Bhattacharjee, S.A. Hussain, Stability of J-aggregated species in an indocarbocyanine dye in Langmuir–Blodgett Films, J Lumin 179 (2016) 287–296. https://doi.org/10.1016/j.jlumin.2016.07.027.
203. K. Tani, C. Ito, Y. Hanawa, M. Uchida, K. Otaguro, H. Horiuchi, H. Hiratsuka, Photophysical Property and Photostability of J-Aggregate Thin Films of Thiacyanine Dyes Prepared by the Spin-Coating Method, J Phys Chem B 112 (2008) 836–844. https://doi.org/10.1021/jp077088o.
204. K. Tani, K. Matsuzaki, Y. Kodama, M. Fukita, T. Kodaira, H. Horiuchi, T. Okutsu, H. Hiratsuka, Photophysical property of the J-aggregate thin film of an oxacyanine dye prepared by the spin-coating method and enhancement of its photostability by use of polydimethylsilane, J Photochem Photobiol A Chem 199 (2008) 150–155. https://doi.org/10.1016/j.jphotochem.2008.05.011.
205. I. Scheblykin, L. Lepnev, A. Vitukhnovsky, M. Van der Auweraer, Electroluminescence and optical properties of poly(phenylenevinylene)/J-aggregate composites, J Lumin 94–95 (2001) 461–464. https://doi.org/10.1016/S0022-2313(01)00337-4.
206. H. Fukumoto, Y. Yonezawa, Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye, Thin Solid Films 327–329 (1998) 748–751. https://doi.org/10.1016/S0040-6090(98)00779-2.
207. N. Kometani, H. Nakajima, K. Asami, Y. Yonezawa, O. Kajimoto, Excited-state dynamics of the mixed J-aggregate of two kinds of cyanine dyes in layer-by-layer alternate assemblies, Chem Phys Lett 294 (1998) 619–624. https://doi.org/10.1016/S0009-2614(98)00919-1.
208. N. Kometani, H. Nakajima, K. Asami, Y. Yonezawa, O. Kajimoto, Luminescence Properties of the Mixed J-Aggregate of Two Kinds of Cyanine Dyes in Layer-by-Layer Alternate Assemblies, J Phys Chem B 104 (2000) 9630–9637. https://doi.org/10.1021/jp001614t.
209. A.V. Sorokin, N.V. Pereverzev, V.M. Liakh, I.A. Borovoy, S.L. Yefimova, Plasmon enhancement of thiacyanine J-aggregates luminescence in polymer films, Functional Materials 22 (2015) 316–321. https://doi.org/10.15407/fm22.03.316.
210. A. V. Sorokin, A.A. Zabolotskii, N. V. Pereverzev, I.I. Bespalova, S.L. Yefimova, Y. V. Malyukin, A.I. Plekhanov, Metal-Enhanced Fluorescence of Pseudoisocyanine J-Aggregates Formed in Layer-by-Layer Assembled Films, The Journal of Physical Chemistry C 119 (2015) 2743–2751. https://doi.org/10.1021/jp5102626.
211. A. V. Sorokin, I.Y. Ropakova, I.I. Grankina, I.A. Borovoy, S.L. Yefimova, Y. V. Malyukin, Unusual enhancement of dye luminescence by exciton resonance of J-Aggregates, Opt Mater (Amst) 96 (2019) 109263. https://doi.org/10.1016/j.optmat.2019.109263.
212. A. V. Sorokin, I.I. Grankina, I.I. Bespalova, A. V. Aslanov, S.L. Yefimova, Y. V. Malyukin, Plasmon-Induced Suppression of Exciton Self-Trapping in Polymer-Bound Pseudoisocyanine J-Aggregates, The Journal of Physical Chemistry C 124 (2020) 10167–10174. https://doi.org/10.1021/acs.jpcc.0c00583.
213. A. Sorokin, R. Grynyov, I. Grankina, I. Bespalova, S. Yefimova, Y. Malyukin, Plasmon-Enhanced Fluorescence of Carbocyanine J-Aggregates in Layered Polymer Films, in: Proceedings of the 2020 IEEE 10th International Conference on "Nanomaterials: Applications and Properties, NAP 2020, 2020. https://doi.org/10.1109/NAP51477.2020.9309537.
214. Y. Obara, K. Saitoh, M. Oda, T. Tani, Room-Temperature Fluorescence Lifetime of Pseudoisocyanine (PIC) J Excitons with Various Aggregate Morphologies in Relation to Microcavity Polariton Formation, Int J Mol Sci 13 (2012) 5851–5865. https://doi.org/10.3390/ijms13055851.
215. M. Vácha, K. Hashizume, T. Tani, Sub-micron scale spectroscopy and microscopy of individual mesoscopic systems at cryogenic temperatures, J Lumin 86 (2000) 195–200. https://doi.org/10.1016/S0022-2313(00)00163-0.
216. D.A. Higgins, J. Kerimo, D.A. Vanden Bout, P.F. Barbara, A Molecular Yarn: Near-Field Optical Studies of Self-Assembled, Flexible, Fluorescent Fibers, J Am Chem Soc 118 (1996) 4049–4058. https://doi.org/10.1021/ja960105v.
217. D.A. Higgins, P.J. Reid, P.F. Barbara, Structure and exciton dynamics in J-agregates studied by polarization dependent near-field scanning optical microscopy, Journal of Physical Chemistry 100 (1996) 1174–1180. https://doi.org/10.1021/jp9518217.
218. T. Tani, Y. Yamaguchi, M. Saeki, M. Oda, M. Vacha, Local reflection micro-spectroscopy of excitons in fibril-shaped molecular J-aggregates prepared in PVA thin films, J Lumin 102–103 (2003) 27–33. https://doi.org/10.1016/S0022-2313(02)00542-2.
219. T. Tani, M. Saeki, Y. Yamaguchi, T. Hayashi, M. Oda, Microscopic exciton properties of fibril-shaped molecular J-aggregates prepared in ultra-thin polymer films, J Lumin 107 (2004) 339–346. https://doi.org/10.1016/j.jlumin.2003.12.002.
220. A. V. Sorokin, A.A. Zabolotskii, N. V. Pereverzev, S.L. Yefimova, Y. V. Malyukin, A.I. Plekhanov, Plasmon Controlled Exciton Fluorescence of Molecular Aggregates, The Journal of Physical Chemistry C 118 (2014) 7599–7605. https://doi.org/10.1021/jp412798u.
221. C.D. Geddes, ed., Metal-Enhanced Fluorescence, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010. https://doi.org/10.1002/9780470642795.
222. R. Badugu, J.R. Lakowicz, Plasmon-Controlled Fluorescence Methods and Applications, in: J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Eds.), Encyclopedia of Spectroscopy and Spectrometry, 3rd ed., Elsevier, 2017: pp. 676–694. https://doi.org/10.1016/B978-0-12-409547-2.12087-6.
223. J.R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, K. Nowaczyk, Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy, Analyst 133 (2008) 1308–1346. https://doi.org/10.1039/b802918k.
224. M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics, Nat Phys 9 (2013) 329–340. https://doi.org/10.1038/nphys2615.
225. P. Vasa, C. Lienau, Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures, ACS Photonics 5 (2018) 2–23. https://doi.org/10.1021/acsphotonics.7b00650.
226. T. Itoh, Y.S. Yamamoto, Y. Ozaki, Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics, Chem Soc Rev 46 (2017) 3904–3921. https://doi.org/10.1039/C7CS00155J.