Funct. Mater. 2025; 32 (3): 348-360.
Self-organization of the structure of bioactive glass-ceramic materials doped with metal ions
O.M. Beketov National University of Urban Economy in Kharkiv, 17 Chornoglazivska Street, Kharkiv, 61002, Ukraine
The relevance of the development of biomedical materials science in the direction of creating biomimetic functional materials is analyzed. Promising directions for the use of glass-ceramic materials for biomedical purposes have been identified, allowing the formation of a dissipative structure that self-organizes into heteronanodomains during a solid-phase reaction. The influence of micro- and macroelements on the formation of bone tissue has been established and their choice in the development of bioactive glass-ceramic materials as cofactors for the self-organization of biological structures based on biomineralization has been substantiated.The compositions of glass-ceramic materials based on the Na2O–K2O–Li2O–CaO–ZrO2– TiO2–MgO–ZnO–Al2O3–B2O3–P2O5–Nb2O5–SiO2 system in the area of metastable liquation have been developed. They are characterized by the ratio of CaO/P2O5 = 1.67–1.7 and SiO2/Li2O = 4 and the total content of modifying components of 1.7–3.5 wt. %. The mechanism of phase formation of the developed glasses during low-temperature rapid heat treatment has been established; it consists in the self-organization of clusters based on sybotaxic groups formed in the glass melt during melting, their ordering into nanostructures and the formation of a sitallized structure. The developed high-strength bioactive glass-ceramic materials contain the main crystalline phases (calcium phosphate, lithium aluminosilicates, lithium disilicate, lithium phosphate, diopside) in the amount of 90–95 vol.%, that simultaneously ensures high bioactivity, strength and the ability to form a crack-resistant structure due to nanostructuring, dendritic reinforcement and the exclusion of thermal effects during synthesis.
1. Y. Wang, H. Qu, B. Liu et al., Nat. Commun., 14, 669 (2023). https://doi.org/10.1038/s41467-023-35982-7
2. B. Zhang, D. Tan, X. Liu et al., Adv. Opt. Mater., 7(20), 1900593 (2019). https://doi.org/10.1002/adom.201900593
3. M.P. Dittmer, M.A. Müller and C. Rüssel. Mater. Chem. Phys., 124, 1083 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.037
4. O. Savvova, H. Voronov, V. Tymofieiev et al., IEEE (ELNANO), 51 (2022). https://doi.org/10.1109/ELNANO54667.2022.9927120
5. B. Hu, B. Yuan and T. Yu. Ceram. Int., 50 (7), Part A, 10000 (2024). https://doi.org/10.1016/j.ceramint.2023.12.265.
6. J. Deubener, M. Allix, M.J. Davis et al., J. Non-Cryst. Solids, 501, 3 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.033
7. P. M. Gopal, V. Kavimani, K.Gupta et al., Micromachines, 14, 1564 (2023) .https://doi.org/10.3390/mi14081564
8. B. De Bari, D. K. Kondepudi, A. Vaidya et al., BioSystems, 239, 105214 (2024). https://doi.org/10.1016/j.biosystems.2024.105214.
9. Savvova O.V., Fesenko O.I., Voronov et al., Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 83 (2023). https://doi.org/10.32434/0321-4095-2023-149-4-83-93
10. O. Savvova, O. Fesenko, O. Babich et al., Func. Mater., 30(2), 187 (2023), https://doi.org/10.15407/fm30.02.187
11. T. Du, X. Niu, P. Cao et al., Applied Materials Today, 32, 101810, (2023). https://doi.org/10.1016/j.apmt.2023.101810.
12. M. Rondanelli, M. A. Faliva, A. Tartara et al., Biometals, 6, 34(4), 715 (2021). https://doi: 10.1007/s10534-021-00305-0
13. T.R. Godebo, M. Jeuland, R. Tekle-Haimanot et al., Bone Rep., 7(12), 100235 (2019). https://doi: 10.1016/j.bonr.2019.100235.
14. S. S. Choi, Y.-A Kim, H. J.Kim et al., J. Fam. Med. 19, 44(1), 21 (2023). https://doi: 10.4082/kjfm.21.0208
15. F. N von Brackel and R. Oheim. JBMR Plus, 14, 8(8), ziae064 (2024). https://doi: 10.1093/jbmrpl/ziae064
16. A. Reza Farmani, M. Ali Salmeh and Z. Golkar. J. Funct. Biomater. 13 (4), 162 (2022). https://doi.org/10.3390/jfb13040162
17. O. V. Savvova, V. M. Shimon, O. V. Babich et al., Func. Mater., 27 (4,), 767 (2020). https://doi.org/10.15407/FM27.04.767
18. O. Savvova, G. Shadrina, O. Babich et al., Chem.Chem. Techn., 9 (3), 349 (2015). https://doi.org/10.23939/chcht09.03.349
19. B. Lönnerdal. Physiol. Rev. 77, 643 (1997). https://doi.org/10.1152/physrev.1997.77.3.6432 0
20. M. F. Elshal, A.E. Bernawi, M.A. Al-Ghamdy et al., Arch. Med. Sci., 8, 270 (2012). https://doi.org/10.5114/aoms.2012.2855 4
21. L. Chen, N. Yin, Y. Ding et al., Regen Ther., 30(19), 107 (2022). https://doi: 10.1016/j.reth.2022.01.004.
22. J. Ha, S.A. Kim, K. Lim et al., Nutr. Res. Pract., 14(1), 55 (2020). https://doi: 10.4162/nrp.2020.14.1.55.
23. A. Naqshbandi and A. Rahman. Ceram. Int., 48, 6, 8112 (2022). https://doi.org/10.1016/j.ceramint.2021.12.01 3
24. A. Reza Farmani, M. Ali Salmeh and Z. Golkar. J. Funct. Biomater., 13 (4), 162 (2022). https://doi.org/10.3390/jfb13040162
25. F. Kurtuldu, N. Mutlu, M. Michálek et al., Mater. Sci. Eng. C Mater. Biol. Appl., 124, 112050 (2021). https://doi.org/10.1016/j.msec.2021.112050
26. S. Decker, M. Arango-Ospina, F. Rehder et al., Sci. Rep., 12, 1. (2022).
27. G. de Souza, B. Fabrício, M. Collares et al.,
28. B. Kołodziejska, N. Stępień and J. Kolmas. Int. J. Mol. Sci., 18, 22(12), 6564 (2021). https://doi.org/10.3390/ijms22126564
29. Z.. Zhang, H. Tang, T. Du et al., Journal of Orthopaedic Translation, 47, 125 (2024). https://doi.org/10.1016/j.jot.2024.06.011
30. M. Molenda and J. Kolmas. Biol. Trace. Elem. Res., 201 (12), 5640 (2023). https://doi.org/10.1007/s12011-023-03631-1
31. A. K. Khosrowshahi, A. B. Khoshfetrat, Y. B. Khosrowshahi et al., Mater. Today Commun., 27, 102392 (2021). https://doi.org/10.1016/j.mtcomm.2021.102392.
32. D. Chappard, P. Bizot, G.Mabilleau et al., Morphologie, 100 (329), 952016 (2015). https://doi.org/10.1016/j.morpho.2015.12.001ff. ffhal-01392262f
33. J. Yang and Z. Ma. Ecotoxicol. Environ. Saf., 213, 112034 (2021). https://doi.org/10.1016/j.ecoenv.2021.112034
34. G. Taskozhina, G. Batyrova, G. Umarova et al., J. Clin. Med., 13(16), 4679 (2024). https://doi.org/10.3390/jcm13164679
35.M. Moll, A. Scheurle, Q. Nawaz et al.,J. Trace. Elem. Med. Biol.,86, 127518 (2024). https://doi.org/10.1016/j.jtemb.2024.127518.
36. M. Arora and E. Arora. J. Arthrosc. Jt. Surg., 4(3), 103 (2017). https://doi.org/10.1016/j.jajs.2017.10.003
37. D. Zou, R. Lin, Y. Han et al., J. Rare Earths, 42 (3), 621 (2024). https://doi.org/10.1016/j.jre.2023.01.019
38. E. Vieira, M. Silva, A. Maia-Filho et al., Minerals, 11(4), 377 (2021). https://doi.org/10.3390/min11040377
39. B. Battistini, C. Greggi, V. V. Visconti et al., Environ. Res., 250, 118514 (2024). https://doi.org/10.1016/j.envres.2024.118514
40. D. Liang, C. Zhong, F. Jiang, et al., ACS Biomater Sci. Eng., 13, 9(3), 1720 (2023). https://doi.org/10.1021/acsbiomaterials.2c01239
41. U.S. Patent 0276056 (2009)
42. U.S. Patent 0193499 (2014)
43. Patent of Ukraine123616 (2014) [in in Ukrainian]
44. B. P. de Sousa, L. M. Marcondes, S. A. Maestri et al., Mater. Chem. Phys., 239, 121996 (2020). https://doi.org/10.1016/j.matchemphys.2019.121996
45. R. A. Silva, G. R. Cassani, A. F. Teófilo et al., Ceram. Int., 50 (11), Part A, 18618 (2024). https://doi.org/10.1016/j.ceramint.2024.02.350
46. A. Gaddam, G. Galleani, V. de Lima Reis et al., J. Am. Ceram. Soc., 107(12), 8624 (2024). https://doi.org/10.1111/jace.2005 1
47. O.V. Savvova, O.V. Babich, G.K. Voronov et al., Strength Mater., 49 (3), 479 (2017).
https://doi.org/10.1007/s11223-017-9890-4
48. O.V. Savvova, G.K.Voronov, O.V. Babich et al., Func. Mater., 26 (1), 182 (2021). https://doi.org/10.15407/FM26.01.182
49. O. Savvova, O.Babich, M. Kuriakin et al., Func. Mater., 24 (2), 311 (2017). https://doi.org/10.15407/fm24.02.311
50. O. Savvova, G. Voronov, V. Topchyi et al., Chem.Chem. Techn., (3), 391 (2018). https://doi.org/10.23939/chcht12.03.391
51. O.V. Savvova, O.V. Babich and G.N. Shadrina. Func. Mater., 21 (4), 421 (2014). https://doi.org/10.15407/fm21.04.421