Funct. Mater. 2025; 32 (3): 423-428.

doi:https://doi.org/10.15407/fm32.03.423

Resistance of manganese steel to hydrogen sulfide embrittlement

A. Borusewicz1, T. Olszewski1, D. Hlushkova2, V.Volchuk3,A. Uzhva2, I. Kyrychenko2

1 International Academy of Applied Sciences in Łomża , 19 Studencka Str., 18-400 Łomża , Republic of Poland
2 Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv , Ukraine
3 Prydniprovska State Academy of Civil Engineering and Architecture, 24a Architect Oleh Petrov Str., 49000 Dnipro, Ukraine

Abstract: 

This study investigates the effect of hydrogen sulfide (H2S) environments on the mechanical properties and microstructural evolution of 30G2 manganese steel used for coupling pipes. Tensile tests were performed on specimens in the initial state and after 720 hours of exposure to an H2S-saturated medium following the MSKR 01-85 procedure. The as-received steel demonstrated superior strength (σB = 842 MPa, σT = 736 MPa) and ductility (δ5 = 19.6%, ψ = 65.6%) compared to standard 30G2 values, indicating thermostrengthening . After prolonged H2S exposure, strength parameters decreased only slightly (by 2–3%), while ductility dropped more noticeably (by 10–13%), but remained acceptable for pipeline applications. Fractographic analysis revealed a transition from a ductile–brittle to a more brittle fracture behavior with the presence of hydrogen-induced cracks. The findings confirm the suitability of modified 30G2 steel for oil and gas pipelines operating in aggressive H2S environments, and suggest that further optimization of alloying and heat treatment could enhance resistance to hydrogen embrittlement.

Keywords: 
30G2 steel, hydrogen sulfide, hydrogen embrittlement, mechanical properties, fracture, oil and gas pipelines.
References: 

1. V. Maslova, R. Nastase, G. Veryasov, N. Nesterenko, E. Fourré, C. Batiot-Dupeyrat, Progress in Energy and Combustion Science, 101, 101096 (2024) https://doi.org/10.1016/j.pecs.2023.101096

2. G.I. Zaginaylov, V.I. Shcherbinin, K. Schuenemann, M.K. Thumme, IEEE Transactions on Plasma Science, 34(3), 512 – 517 (2006) https://doi.org/10.1109/TPS.2006.875760

3. P. Andrenko, A. Rogovyi, I. Hrechka, S. Khovanskyi, M. Svynarenko, Journal of Physics: Conference Series, 1741(1) (2021) https://doi.org/10.1088/1742-6596/1741/1/012024

4. Y. Gutarevych, V. Mateichyk, J. Matijošius, A. Rimkus, I. Gritsuk, O. Syrota, Y. Shuba, Energies, 13(5), 1076 (2020) https://doi.org/10.3390/en13051076

5. D.B. Hlushkova, O.D. Hrinchenko, L.L. Kostina, A.P. Cholodov, Problems of Atomic Science and Technology, 1(113), 181-188 (2018).

6. Sergiyenko O.,Hernández Balbuena, D., Tyrsa V., Rosas Méndez, Patricia Luz A. Lopez M. R, Hernandez W, Podrygalo M., Gurko A. Journal of the International Measurement Confederation, 44, 1229 – 1242, (2011) https://www.sciencedirect.com/science/article/abs/pii/S0263224111001254?...

7. Vafaeva, K.M., Dhyani, M., Acharya, P., Parik, K., Ledalla, S., https://doi.org/10.1051/bioconf/20248601111

8. M. Krbata, M. Kohutiar, J. Escherova et. al. Applied Mechanics, 6(1), 16. (2025). https://doi.org/10.3390/applmech6010016

9. M. Yuan, L. Zhang, J. Wan et. al. Structures, 75, 108677 (2025). https://doi.org/10.1016/j.istruc.2025.108677

10. K.M. Vafaeva, N.I. Vatin, D.F. Karpov, V. Romanovski, Materials Research Express. 12, 075307 (2025) https://doi.org/10.1088/2053-1591/adf161

11. D. Leontiev, O.I. Voronkov, V. Korohodskyi, D. Hlushkova, I. Nikitchenko, E. Teslenko, O. Lykhodii, SAE Technical Paper, 2020-01-2222 (2020) https://doi.org/10.4271/2020-01-2222

12. Kalinina, N.E., Glushkova, D.B., Voronkov, A.I., Kalinin, V.T., https://doi.org/10.15407/fm26.03.514

13. M. Rajendran, M. Arumugam, L. Sourirajan et. al., Results in Engineering, 26, 104614 (2025) https://doi.org/10.1016/j.rineng.2025.104614

14. D.B. Hlushkova, V.M. Volchuk, Functional Materials, 30(3), 453 (2023) https://doi.org/10.15407/fm30.03.453

15. C. Ding, L. Jiang, J. Xu, S. Guo, J. Zhang, P. Xiong, Z. Piao, International Journal of Bifurcation and Chaos, 35(08), 2550098 (2025) https://doi.org/10.1142/S0218127425500981

16. P. Zhang, J. Ding, J. Guo, F. Wang, Fractal and Fractional, 8(6), 304 (2024) https://doi.org/10.3390/fractalfract8060304

17. Andrenko P., Rogovyi A., Hrechka I., Khovanskyi S., Svynarenko M. Journal of Physics: Conference Series, 1741, (2021) https://iopscience.iop.org/article/10.1088/1742-6596/1741/1/012024

18. Kalinina, N.E., Glushkova, D.B., Voronkov, A.I., Kalinin, V.T., Functional Materials, 26(3), 514–518 (2019) https://doi.org/10.15407/fm26.03.514

19. V.K. Maksudovna, G.Z. Anatolyevna, S. Dixit et. al. E3S Web of Conferences, 430, 01191 (2023) https://doi.org/10.1051/e3sconf/202343001191

20. D.B. Hlushkova, V.M. Volchuk, P.M. Polyansky, V.A. Saenko, A.A. Efimenko, Functional Materials, 30(2) 275 (2023) https://doi.org/10.15407/fm30.02.275

21. D.B. Hlushkova, A.V. Kalinin, N.E. Kalinina, V.M. Volchuk, V.A. Saenko, A.A. Efimenko, Problems of Atomic Science and Technology, 2(144), 126-129 (2023). https://doi.org/10.46813/2023-144-126

22. V.I. Bolshakov, V.M. Volchuk, Yu.I. Dubrov, Metallofizika i Noveishie Tekhnologii, 40(9), 1165-1171 (2018)