Funct. Mater. 2013; 20 (4): 516-522.

http://dx.doi.org/10.15407/fm20.04.516

Dipole-exchange spin waves in a periodically layered ferromagnetic nanotube

Y.I.Gorobets[1], V.V.Kulish[2]

[1]Institute of Magnetism, National Academy of Sciences of Ukraine, 36-b Vernadskogo Str., 03142 Kyiv, Ukraine
[2]Department of General and Experimental Physics, National Technical University of Ukraine "Kyiv Polytechnic Institute",37 Peremogy Ave., 03056 Kyiv, Ukraine

Abstract: 

Spin waves in a periodically layered ferromagnetic nanotube (nanotube magnetophotonic crystal) are investigated.External magnetic field is considered to be applied parallel to the nanotube symmetry axis. The linearized Landau-Lifshitz equation in magnetostatic approximation is used, taking into account the magnetic dipole-dipole interaction, theexchange interaction and the anisotropy effects. As a result, the local dispersion relation (for uniform nanotube sections), the radial wave number spectrum and the longitudinal quasi-wave number spectrum (for the entire nanotube) for spin waves in the above-described nanotube are found. From the radial wave number spectrum, limitations on the transverse-angular modes are defined. The longitudinal quasi-wave number spectrum in the "effective medium" limit is shown to have the same form as for a uniform nanotube (with averaged parameters).

References: 

1.V.V.Kruglyak, S.O. Demokritov, D.Grundler, J.Phys.D:Appl.Phys., 43, 264001 (2010).

2.R.P.van Stapele, F.J.A.M.Greidanus, J.W.Smits, J.Appl.Phys., 57, 1282 (1985).

3.B.A.Kalinikos, N.G.Kovshikov, A.N.Slavin, J.Appl.Phys., 69, 5712 (1991).

4.M.Bauer, O.Buttner, S.O.Demokritov et al., Phys.Rev.Lett., 81, 3769 (1998).

5.K.Yu.Guslienko, A.N.Slavin, J.Appl.Phys., 87, 6337 (2000).

6.F.G.Aliev, J.F.Sierra, A.A.Awad et al., Phys.Rev.B, 79, 174433 (2009).

7.J.Jorzick, S.O.Demokritov, C.Mathieu et al., Phys.Rev.B, 60, 15194 (1999).

8.R.Arias, D.L.Mills, Phys.Rev.B, 63, 134439 (2001).

9..R.Skomski, M.Chipara, D.J.Sellmyer, J.Appl.Phys., 93, 7604 (2003).

10.P.C.Fletcher, C.Kittel, Phys.Rev., 120, 2004 (1960).

11.S.M.Cherif, Y.Roussigne, C.Dugautier et al., J.Magn.Magn.Mater., 222, 337 (2000).

12U.Ebels, J.-L.Duvail, P.E.Wigen et al., Phys.Rev.B, 64, 144421 (2001).

13A.Encinas-Oropesa, M.Demand, L.Piraux et al., Phys.Rev.B, 63, 104415 (2001).

14M.R.Freeman, B.C.Choi, Science, 294, 1484 (2001).

15Y.Zhang, H.Dai, Appl.Phys.Lett., 77, 3015 (2000).

16Y.Zhang, N.W.Franklin, R.J.Chen et al., Chem.Phys.Lett., 35, 331 (2000).

17.K.Nielsch, F.J.Castano, C.A.Ross et al., J.Appl.Phys., 98, 034318 (2005).

18Y.C.Sui, R.Skomski, K.D.Sorge, D.J.Sellmyer, Appl.Phys.Lett., 84, 1525 (2004).

19.K.Nielsch, F.J.Castano, S.Matthias et al., Adv. Engin. Mater., 7, 217 (2005).

20.P.Landeros, S.Allende, J.Escrig et al., Appl.Phys.Lett., 90, 102501 (2007).

21.Z.K.Wang, H.S.Lim, H.Y.Liu et al., Phys.Rev.Lett., 94, 137208 (2005).

22.W.Sharif, S.Shamaila, M.Ma et al., Appl.Phys.Lett., 92, 032505 (2008).

23.X.F.Salem, X.F.Searson, K.W.Leong, Nat.Mater., 2, 668 (2008).

24.K.W.Berry, K.W.Curtis, J.Phys.D:Appl.Phys., 36, R198 (2003).

25.H.Leblond, V.Veerakumar, Phys.Rev.B, 70, 134413 (2004).

26.V.Gonzalez, P.Landeros, P.Nunez, J.Magn.Magn.Mater., 322, 530 (2010).

27.M.Inoue, H.Uchida, K.Nishimura, P.B.Lim, J.Mater.Chem., 16, 678 (2006).

28.M.Inoue, R.Fujikawa, A.Baryshev et al., J.Phys.D:Appl.Phys., 39, R151 (2006).

29.M.Inoue, K.Arai, T.Fujii et al., J.Appl.Phys., 85, 5768 (1999).

30.H.Kato, T.Matsushita, A.Takayama et al., Opt.Commun., 219, 271 (2003).

31.V.V.Kruglyak, R.J.Hicken, A.N.Kuchko et al., J.Appl.Phys., 98, 014304 (2005).

32.V.V.Kruglyak, A.N.Kuchko, Physica B, 339, 130 (2003).

33.S.A.Nikitov, P.Tailhades, C.S.Tsai, J.Magn.Magn.Mater., 236, 320 (2001).

34.C.Elachi, IEEE Trans. Magn., MAG-11, 36 (1975).

35.Yu.V.Gulyaev, A.A.Nikitov, Doklady Physics, 46, 687 (2001).

36.A.I.Akhiezer, V.G.Bar′yakhtar, S.V.Peletminskiy, Spin Waves, North-Holland, Amsterdam (1968).

37.V.V.Kruglyak, A.N.Kuchko, V.I.Finokhin, Phys.Solid State, 46, 867 (2004).

Current number: