Funct. Mater. 2020; 27 (3): 463-467.

doi:https://doi.org/10.15407/fm27.03.463

Elastic vibrations of silicon and germanium nanoparticles and the influence on their optical properties

V.M.Yashchuk, I.V.Lebedyeva, O.V.Boryseiko

T.Shevchenko National University of Kyiv, 64/13 Volodymyrs'ka Str., 01601 Kyiv, Ukraine

Abstract: 

The paper deals with the problem on the connection of mechanical and optical properties of silicon and germanium nanoparticles. Experimental evidence of insignificant influence of nanoparticle sizes on oscillatory motions of lattice ions of medium is considered. In particular, the experimental results obtained by thermoluminescent methods and the excitation of acoustic vibrations by light in nanoparticles and macroenvironment are examined. It is shown that the theory of elasticity can be applied to describe the vibrations of nanoparticles. Using the equations of elasticity theory, the values of radial eigen frequencies of vibrations for the spherical silicon and germanium nanoparticles are calculated. The optical properties of such nanoparticles and the possibility of their modulation by elastic oscillations are considered. The applications of obtained results to the design of sensor systems (for the detecting of medium oscillations in the kilohertz frequency range) as well as for the use in information technologies are examined.

Keywords: 
silicon and germanium nanoparticles, elastic oscillations, optical absorption and light emission, sensors.
References: 

1. I.V.Lebedyeva, O.V.Boryseiko, V.M.Yashchuk, Bull. T.Shevchenko National University of Kyiv, Ser. Phys. Mathem., 3, 115 (2017).
 
2. A.F.Gumenjuk, I.M.Dmitruk, M.O.Davydenko, Bull. T.Shevchenko National University of Kyiv, Ser. Phys. Mathem., 4, 201 (2009).
 
3. G.P.Blinnikov, V.N.Golonzhka, A.F.Gumenyuk, Opt. Spectrosc., 69, 1054 (1990).
 
4. G.V.Hartland, Phys. Chem. Chem. Phys., 6, 5263 (2004).
https://doi.org/10.1039/b413368d
 
5. H.Petrova et al., J. Chem. Phys., 126, 094709-1 (2007).
https://doi.org/10.1063/1.2672907
 
6. V.T.Grinchenko, V.L.Karlash, V.V.Meleshko, A.F.Ulitko, Int. Appl. Mech., 12, 483 (1976).
https://doi.org/10.1007/BF00882456
 
7. V.V.Meleshko, A.Gomilko, Proc. Math. Phys. Eng. Sci., 460, 807 (2004).
https://doi.org/10.1098/rspa.2003.1186
 
8. H.Lamb, Proc. London Math. Soc., 13, 187 (1882).
 
9. F.Dufey, S.F.Fischer, J. Phys. Chem. C, 111, 3868 (2007).
https://doi.org/10.1021/jp0703105
 
10. A.Ahmed, M.Pelton, J.R.Guest, ACS Nano, 11, 9360 (2017).
https://doi.org/10.1021/acsnano.7b04789
 
11. T.Jollans, M.Orrit, Phys. Rev. E, 99, 063110-1 (2019).
https://doi.org/10.1103/PhysRevE.99.063110
 
12. A.P.Alivizatos, J. Phys. Chem. -Us, 100, 13266 (1996).
 
13. Xiaoyu Cheng, Bin Guan, Prog. Electromagn. Res., 160, 103 (2017).
https://doi.org/10.2528/PIER17120504
 
14. Manas Kumar Sahu, Intern. J. Appl. Engin. Res., 14, 491 (2019).

Current number: