Funct. Mater. 2025; 32 (2): 259-265.

doi:https://doi.org/10.15407/fm32.02.259

Nanomagnetic technologies in the creation of smart porous materials

M. Riabchykov

Lutsk national technical university, Lvivska str. 75, Lutsk, Ukraine

Abstract: 

The purpose of the work consists in substantiation and creation of porous materials with given parameters of size and structure of cavities. Nanocomposites based on a mixture of divalent and trivalent iron oxides are the basis for such materials. Methods of synthesis of nanocomponents are based on chemical reactions of iron sulfate and iron chloride with the addition of ammonia hydrate. Nanopowder was added to the polyurethane mixture during the formation of the foamed porous structure. The porous material was formed under the conditions of a magnetic field with induction of 5-6 mT. As a result, structures were obtained in which the pore sizes depend on the content of nanocomponents and the induction of a magnetic field. Based on the theory of elasticity, the necessary parameters of the magnetic field are determined to ensure the specified pore sizes. Application of a magnetic field with an induction of -6 to +6 mT to the finished material leads to the occurrence of hysteresis effects, resulting in final values of 1-1.5 mT. The obtained results demonstrate the possibility of adjusting the porosity parameters of the material during creation and operation.

Keywords: 
porous materials, magnetic technologies, nanocomponents, smart materials
References: 
1. L.Abylgazina, I.Senkovska, S.Kaskel, Communications Materials, 5, 132 (2024).
https://doi.org/10.1038/s43246-024-00565-6
 
2. S.Hua, M.O. Okello, J.Zhang, Scientific Reports, 14, 14277 (2024).
https://doi.org/10.1038/s41598-024-65025-0
 
3. Z.Shiyun, X.Jun, X.Junxian, Z.Zhaohui, D.Qijun, C.Kefu, Separation and Purification Technology, 349, 127672, (2024).
https://doi.org/10.1016/j.seppur.2024.127672
 
4. H.Sung-Ho, E.Kyung Jang, Materials, 16, 3737 (2023).
https://doi.org/10.3390/ma16103737
 
5. O.Mikulich, In: V.Tonkonogyi, V.Ivanov, J.Trojanowska, G.Oborskyi, I. Pavlenko (eds) Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering, Springer, Cham. (2023).
https://doi.org/10.1007/978-3-031-16651-8
 
6. M.Riabchykov, L.Nazarchuk, O.Tkachuk, Tekstilec, 65(4), 268-277 (2022).
https://doi.org/10.14502/tekstilec.65.2022064
 
7. F.Fan, Z.Zhihui, L.Jiwei, H.Yuesheng, C.Weichao, Progress in Materials Science, 146, 101328 (2024).
https://doi.org/10.1016/j.pmatsci.2024.101328
 
8. P.Amruth, P.Akshay, M.Rosemol Jacob, J.M.Joy, S.Mathew, International Journal of Biological Macromolecules. 276, Part 1, 133668 (2024).
https://doi.org/10.1016/j.ijbiomac.2024.133668
 
9. M.Sharifi, S.H.Bahrami, J. Biological Macromolecules,, 277, Part 2, 133666 (2024).
https://doi.org/10.1016/j.ijbiomac.2024.133666
 
10. M.C.B.Cardinali, J.H.Miranda, T.B.Moraes, Soil and Tillage Research, 244, 106258 (2024).
https://doi.org/10.1016/j.still.2024.106258
 
11. N.Sohrabi, H.Almasi, M.Moradi, Food Hydrocolloids, 156, 110261 (2024).
https://doi.org/10.1016/j.foodhyd.2024.110261
 
12. J.Wang, W.Lin, Z.Chen, et al., Nature Communications, 15, 1575 (2024).
https://doi.org/10.1038/s41467-024-46071-8
 
13. O.Povstyanoy, N.Imbirovych, V.Posuvailo, O.Zabolotnyi, T.Artyukh, In: V.Tonkonogyi, V.Ivanov, J.Trojanowska, G.Oborskyi, I.Pavlenko, Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering, Springer, Cham. (2023).
 
14. O.Povstyanoy, N.Imbirovich, R.Redko, O.Redko, P.Savaryn, In: V.Tonkonogyi, V.Ivanov, J.Trojanowska, G.Oborskyi, I.Pavlenko,. Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering, Springer, Cham. (2024).
 
15. A.Vijeata, G.R.Chaudhary, S.Chaudhary, A.A.Ibrahim, Chemosphere, 357, 141935 (2024).
https://doi.org/10.1016/j.chemosphere.2024.141935
 

16. P.P.Savchuk, V.P.Kashytskyi, M.D.Melnychuk, O.L.Sadova, S.V.Myskovets, Funct. Mater., 26 (3): 621-628. (2019).
https://doi.org/10.15407/fm26.03.621

 

17. V.I.Shvabyuk, O.A. Mikulich, Journal of Mathematical Sciences, 253, 148 (2021).
https://doi.org/10.1007/s10958-021-05219-3
 
18. A.Zeleňáková, V.Zeleňák, E.Beňová. et al., Scientific Reports, 14, 14427 (2024).
https://doi.org/10.1038/s41598-024-64839-2
 
19. W.Gu, Y.Jiang, Materials Today Sustainability, 27, 100793 (2024).
https://doi.org/10.1016/j.mtsust.2024.100793
 
20. M.Riabchykov, I.Tsykhanovska, A.Alexandrov, J. Materials Science, 58(16), 7244(2023).
https://doi.org/10.1007/s10853-023-08463-x
 
21. Y.Yu, X.Bu, J.Qi, Z.Zhang, J.Geng, Applied Clay Science, 258, 107479 (2024).
https://doi.org/10.1016/j.clay.2024.107479
 
22. W.Han, J.S.Lee, D.Lee, J.Kim, Case Studies in Construction Materials, 21, e03544 (2024).
https://doi.org/10.1016/j.cscm.2024.e03544
 
23. Y.G.Chabak, V.I.Zurnadzhy, M.A.Golinskyi, I.Petryshynets, S.P.Shymchuk, Progress in Physics of Metals, 23(4), 583 (2022).
https://doi.org/10.15330/pcss.23.4.714-719
 
24. B.Beitzinger, P.Walther, M.Lindén, Microporous and Mesoporous Materials, 378, 113247 (2024).
https://doi.org/10.1016/j.micromeso.2024.113247
 
25. M.He, Y.Chen, G.Chen, W.Li, M.Zhang, C.Zhang, H.Zhang, X.Long, K.Tang, T.Duan, L.Zhu, Environmental Pollution, 357, 124442 (2024).
https://doi.org/10.1016/j.envpol.2024.124442
 
26. M.Riabchykov, V.Vlasenko, S.Arabuli, Vlakna a Textil, 18(2), 24 (2011)
 
27. A.Sumithra, R.Sivaraj, V.R.Prasad, ... S.Kuharat, B.R.Kumar. International Journal of Modern Physics, B, 38(29), 2450398, (2024).
https://doi.org/10.1142/S0217979224503983
 
28. T.Yuan, L.Shen, D.Dini, Acta Biomaterialia, 173, 123-134 (2024).
https://doi.org/10.1016/j.actbio.2023.11.007
 
29. A.Yadav, H.Kumar, R.Sharma, R.Kumari, Surfaces and Interfaces, 39, 102925 (2023).
https://doi.org/10.1016/j.surfin.2023.102925
 
30. M.Riabchykov, O.Tkachuk, L.Nazarchuk, A.Alexandrov, Materials Research Express, 10(1),015401 (2023).
https://doi.org/10.1088/2053-1591/acadcf
 
31. Y.Liu, J.Chen, W.Xu, J.Yan, Engineering Geology, 340, 107666 (2024).
https://doi.org/10.1016/j.enggeo.2024.107666
 
32. H.Tang, N.V.Nguyen, H.Nguyen-Xuan, J.Lee, International Jou).
 
33. A.T.Mohamed, R.A.Hameed, S.H.EL-Moslamy, et al., Scientific Reports, 14, 6081 (2024).
https://doi.org/10.1038/s41598-024-55319-8
 
34. M.Riabchykov, T.Furs, A.Alexandrov, I.Tsykhanovska, O.Hulai, V.Shemet, J. Engineering Sciences , 10(2), 56-62 (2023).
https://doi.org/10.21272/jes.2023.10(2).c7
 
35. M.Rugiel, N.Janik-Olchawa, J.Kowalczyk, K.Pomorska, M.Sitarz, E.Bik, D.Horak, M.Babic, Z.Setkowicz, J.Chwiej, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 323, 124888 (2024).
https://doi.org/10.1016/j.saa.2024.124888
 
36. I.Y. Magda, M.S. Sayed, Journal of Molecular Liquids, 407, 125284 (2024).
https://doi.org/10.1016/j.molliq.2024.125284
 
37. M.Riabchykov, A.Alexandrov, I.Tsykhanovska, S.Nechipor, A.Nikulina, S.Vilkov, Vlákna a textile, 26(4), 47-52 (2019).
 
38. T.N.Ghosh, A.K.Bhunia, S.S.Pradhan, et al,. 35, Journal of Materials Science: Materials in Electronics, 1124 (2024).
https://doi.org/10.1007/s10854-024-12881-1
 
39. M.Al-Gharram, P.Uhlmann, M.Al-Hussein, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 684, 133212, (2024).
https://doi.org/10.1016/j.colsurfa.2024.133212
 
40. U.A.Campos, D.E.Hall, Thin-Walled Structures, 138, 199-207. (2019).
https://doi.org/10.1016/j.tws.2019.02.008
 
41. L. Moreno-Sanabria, T. Uhlířová, W. Pabst, M. Koller, H. Seiner, M.I. Osendi, M. Belmonte, P. Miranzo, Journal of the European Ceramic Society, 44, Issue 15, 116771, (2024).
https://doi.org/10.1016/j.jeurceramsoc.2024.116771
 
42. X.Zhang, Q.Sun, X.Liang, et al., Nature Communications, 15, 392 (2024).
https://doi.org/10.1038/s41467-024-44707-3